Chatbots are available in every nook and corner of business or educational sectors with their ability to imitate human-like conversations and execute them successfully across various devices. This is incredibly helping a lot of customers and business owners too since both of them can now interact in a time-saving plus cost-effective manner. In fact, those who were once stuck with the question, “What is a chatbot?” are now curious to know about the process of creating a chatbot and connecting it well with their websites or apps to engage customers by providing them with what they really want in terms of services.
Indeed, with the increasing demand for such user-friendly and interactive chatbots, many development teams are constantly putting their efforts to build a chatbot that can do all tasks – from generating leads to serving customers. But only a few of them succeed in designing those chatbot/chatbots which can be adopted by customers in a proactive and effortless manner. Thinking about the actual reason? It is – mistakes while building them. Here are 7 common mistakes to avoid while developing chatbots responding well to the queries of the customers raised by them either on a website or a mobile app:
1. Keeping the Design of the Chatbot Generic
A generic chatbot design may fail a chatbot at times of personalizing with users of a particular brand or a company. This is because such chatbots aren’t interacting with users in a way that makes them feel they are given a priority. And such absence of much-needed personalization will:
- create a poor customer experience.
- lead to no fulfillment of in-depth or domain-specific requirements of a company since generic chatbots lack data that can handle customer dealing.
Thus, instead of keeping the design of your chatbot generic, you must get involved in such a chatbot development process which can blur the line between a human being and a chatbot not only handling customers of different sectors well but also understanding what they are really talking about. All this will improve customer experience and it’s not bad for you from a business perspective!!
2. Launching a Bot in Absence of a Pre-decided Goal
Imagine your friend say a girl is running a business without any knowledge about the choices of its customers!! Will she achieve goals planned by her like more personalized brand engagement, profitable lead generation? Obviously not!! Similarly, you will get nothing from a bot launched without a pre-decided goal because:
- Now, your chatbot will end up doing something impractical as it won’t understand the user’s problem, nor communicate with relevant responses.
- Also, if your company or you have adapted any marketing strategy and implemented it via chatbot, it won’t reap fruits in terms of revenue or sales growth as a chatbot isn’t willing to pay attention to metrics which matter the most in the business world.
So, from now, plan first why are you taking interest in deploying a chatbot for your business requirements and then launch it only after you find it capable enough to adapt to changing requirements of customers of variable preferences.
3. Not Selecting the Right Use Case
Selecting the right use case from the list of chatbot use cases is really important. If you select a wrong use case, then it may sink your businesses in the long run because with such a use-case, your business will fail to achieve goals hierarchically structured in accordance with the interest of users and the employees working harder to increase sales for your businesses. Right now, there are three use cases for which your chatbot can produce profitable results:
- Customer service in which chatbots were able to replace 36 percent of US customer service staff (according to business insider).
- Marketing automation in which chatbots have increased e-commerce sales.
- B2E i.e. Business-to-Employee in which chatbots have successfully automated certain HR responsibilities.
Thus, instead of making the selection of wrong use cases while developing your chatbots, you must select anyone mentioned in the above points for better sales and boost up the satisfaction level of customers interested in the services your business is offering to them.
4. Avoiding the Rules of Conversation
Conversational rules in chatbots must be followed because such rules make the interaction with your users not only interesting but engaging too. With such rules, the personality of your chatbots will sound appealing thereby making your audience feel flexible to share information like requirements and challenges they are facing while making decisions related to the services of your brand. Take a look at some of the rules with which your chatbot can handle even the complex requirements of your audience:
- Keep the tone of your chatbot, when it is conversing, simple and less-complicated like using short and simple sentences instead of long ones.
- Aim towards including visual elements while designing the personality of a chatbot. These elements include GIFs, emojis, or video reels of shorter duration.
- Train your chatbots in a way that they can reach the core aspect of the user’s thinking as soon as possible. With this, they won’t be wasting time beating around the bushes.
Rather than selecting chatbots that close the conversations with one-word answers, use voice chatbots that can mimic humans and are active towards welcoming and closing messages. Such communication develops a chatbot’s tendency to sound more human while interacting with an audience of variable preferences and problem statements.
5. Planning to Launch the Chatbot Without Testing It
Launching a chatbot without any prior testing can be counted as one of the reasons for the failure of your chatbot because it won’t be able to cater to complex requirements a business may encounter while scaling itself. Moreover, such chatbots, that are left untested, will create a negative customer experience for sure due to their inabilities of deriving meaningful solutions in real-time.
To avoid the consequences of those unskilled chatbots, what businesses can do is release the beta version just like Amazon and Google. This will let those businesses know not only the common mistakes in chatbot design but also give them a picture of users’ opinions regarding the content they have accessed through those chatbots. And if possible, all such irregularities found in the beta version will be identified and corrected thereby managing the expectations of users in a time-saving and effortless manner.
6. Ignorance Towards Tracking the Chatbot’s Performance
A chatbot’s performance needs to be tracked as it will prevent a chatbot from losing focus much needed to interact with customers. And to track the performance precisely and scalably, various chatbot KPIs can be used. They are sufficient enough to make your chatbot user-centric as well as effective towards proposing solutions to the industry-relevant problem statements. A few of those KPIs or key performance indicators are:
- Chatbot Response Volume – tells the number of responses your chatbot can produce for a certain period.
- Goal Completion Rate – specifies what the success rate of your chatbot is while accomplishing a set of goals.
- Retention Rate – signifies the number of users retained by your chatbot with its frequency of solving queries.
- Non-Response Rate – notifies how many times your chatbot (like button-based or AI-based) failed while responding to its target audience.
With all the mentioned-above KPIs, it becomes much flexible to measure chatbot effectiveness at times a particular set of customers have some issues which need to be answered with appropriate and executable solutions. Or, identifying the customers who’re still not satisfied with the offerings your businesses propose in real-time.
7. Focusing Too Much on Creating Flow-based Chatbots
Flow-based chatbots, in simpler terms, can’t adapt to variable tones of conversation because they usually follow a communication approach that is pre-defined. Though you can find traces of Artificial Intelligence in their ways of working, yet there are other challenges with them like:
- Negative customer experience since they fail to personalize with customers on grounds of emotions.
- Less analytical capability and data security because of which they are likely rejected by businesses.
- Low-quality relevant responses that waste the time of businesses and customers.
Hence, it is essential to create a chatbot not bound to some pre-defined rules as they fail to adapt themselves to frequently-changing emotions of users segmented by businesses in accordance with age, gender, and level of understanding things happening around. With such an initiative, customers won’t get irritated with the same responses for the questions they ask at different intervals of time.