Tensorflow.js is an open-source library that is being developed by Google for running machine learning models as well as deep learning neural networks in the browser or node environment.
The tf.constraints.nonNeg() function us used to create a nonNeg constraint. nonNeg is a non-negative weight constraint. It is inherited from constraint class. Constraints are the attributes of layers.
Syntax:
tf.constraints.nonNeg()
Parameters:
- w: It specifies the input weight variable. It is an optional parameter.
Return value: It returns tf.constraints.Constraint.
Example 1:
Javascript
// Importing the tensorflow.Js library import * as tf from "@tensorflow/tfjs" // Use nonNeg() function const constraint = tf.constraints.nonNeg( ) // Print console.log(constraint) |
Output
{}
Example 2: In this example we will create a dense layer using nonNeg constraint and apply the layer formed to a tensor.
Javascript
// Importing the tensorflow.Js library import * as tf from "@tensorflow/tfjs" // Create nonNeg constraint using nonNeg() function const constraint = tf.constraints.nonNeg() // Create a new dense layer using nonNeg constraint const denseLayer = tf.layers.dense({ units: 4, kernelInitializer: 'heNormal' , kernelConstraint: constraint , biasConstraint: constraint , useBias: true }); // Create input const input = tf.ones([2, 2]); // Apply denseLayer to input const output = denseLayer.apply(input); // Print the output output.print() |
Output
Tensor [[-0.7439224, -1.3572885, -1.2860565, 1.3913929], [-0.7439224, -1.3572885, -1.2860565, 1.3913929]]
Reference: https://js.tensorflow.org/api/1.0.0/#constraints.nonNeg