A vector or arraylist is a one-dimensional array of elements. The elements of a Sparse Vector have mostly zero values. It is inefficient to use a one-dimensional array to store a sparse vector. It is also inefficient to add elements whose values are zero in forming sums of sparse vectors. We convert the one-dimensional vector to a vector of (index, value) pairs.
Examples
Input: Enter size of Sparse Vectors : 100 Enter number of entries for Vector A : 5 Enter 5 (int, double) pairs 2 20.0 5 12.2 19 23.1 4 66.0 11 100.0 Enter number of entries for vector B : 5 Enter 5 (int, double) pairs 9 21.0 10 44.5 6 13.22 71 30.0 63 99.0 Output: Vector A = (2, 20.0) (4, 66.0) (5, 12.2) (11, 100.0) (19, 23.1) Vector B = (6, 13.22) (9, 21.0) (10, 44.5) (63, 99.0) (71, 30.0) A dot B = 0.0 A + B = (2, 20.0) (4, 66.0) (5, 12.2) (6, 13.22) (9, 21.0) (10, 44.5) (11, 100.0) (19, 23.1) (63, 99.0) (71, 30.0)
Approach
To store the Sparse Vector efficiently we only store the non-zero values of the vector along with the index. The First element of pair will be the index of sparse vector element(which is non-zero) and the second element will be the actual element.
We are using TreeMap as the vector for the index-value pairs. The advantage of using TreeMap is, the map is sorted according to the natural ordering of its keys. This proves to be an efficient way of sorting and storing the key-value pairs.
Implementation
Java
// importing generic packages import java.util.Scanner; import java.util.TreeMap; import java.util.Map; public class SparseVector { // TreeMap is used to maintain sorted order private TreeMap<Integer, Double> st; private int size; // Constructor public SparseVector( int size) { this .size = size; // assigning empty TreeMap st = new TreeMap<Integer, Double>(); } // Function to insert a (index, value) pair public void put( int i, double value) { // checking if index(i) is out of bounds if (i < 0 || i >= size) throw new RuntimeException( "\nError : Out of Bounds\n" ); // if value is zero, don't add to that index & // remove any previously held value if (value == 0.0 ) st.remove(i); // if value is non-zero add index-value pair to // TreeMap else st.put(i, value); } // Function to get value for an index public double get( int i) { // checking if index(i) is out of bounds if (i < 0 || i >= size) throw new RuntimeException( "\nError : Out of Bounds\n" ); // if index is valid, return value at index if (st.containsKey(i)) return st.get(i); // if index not found, it means the value is zero as // only non-zero entries are added to the Map else return 0.0 ; } // Function to get size of the vector public int size() { return size; } // Function to get dot product of two vectors public double dot(SparseVector b) { SparseVector a = this ; // Dot product of Sparse Vectors whose lengths are // different is not possible if (a.size != b.size) throw new RuntimeException( "Error : Vector lengths are not same" ); double sum = 0.0 ; // Traversing each sorted vector and getting // product of consequent entries of the vectors if (a.st.size() <= b.st.size()) { for (Map.Entry<Integer, Double> entry : a.st.entrySet()) if (b.st.containsKey(entry.getKey())) sum += a.get(entry.getKey()) * b.get(entry.getKey()); } // Traversing each sorted vector and getting // product of consequent entries of the vectors else { for (Map.Entry<Integer, Double> entry : b.st.entrySet()) if (a.st.containsKey(entry.getKey())) sum += a.get(entry.getKey()) * b.get(entry.getKey()); } return sum; } // Function to get sum of two vectors public SparseVector plus(SparseVector b) { SparseVector a = this ; // Addition of Sparse Vectors whose lengths are // different is not possible if (a.size != b.size) throw new RuntimeException( "Error : Vector lengths are not same" ); // creating new empty Sparse Vector object SparseVector c = new SparseVector(size); // Traversing and adding the two vectors a & b and // constructing resultant Sparse Vector c for (Map.Entry<Integer, Double> entry : a.st.entrySet()) c.put(entry.getKey(), a.get(entry.getKey())); for (Map.Entry<Integer, Double> entry : b.st.entrySet()) c.put(entry.getKey(), b.get(entry.getKey()) + c.get(entry.getKey())); return c; } // Function toString() for printing vector public String toString() { String s = "" ; for (Map.Entry<Integer, Double> entry : st.entrySet()) s += "(" + entry.getKey() + ", " + st.get(entry.getKey()) + ") " ; return s; } public static void main(String[] args) { Scanner scan = new Scanner(System.in); System.out.println( "Enter size of Sparse Vectors : " ); // Size of the two Sparse Vector int n = scan.nextInt(); // sparse vector a and b SparseVector A = new SparseVector(n); SparseVector B = new SparseVector(n); // store key, value pairs System.out.println( "Enter number of entries for Vector A :" ); int n1 = scan.nextInt(); System.out.println( "Enter " + n1 + " (int, double) pairs :" ); for ( int i = 0 ; i < n1; i++) A.put(scan.nextInt(), scan.nextDouble()); System.out.println( "Enter number of entries for vector B :" ); int n2 = scan.nextInt(); System.out.println( "Enter " + n2 + " (int, double) pairs :" ); for ( int i = 0 ; i < n2; i++) B.put(scan.nextInt(), scan.nextDouble()); System.out.println( "\nVector A = " + A); System.out.println( "Vector B = " + B); System.out.println( "\nA dot B = " + A.dot(B)); System.out.println( "A + B = " + A.plus(B)); } } |
Output