The java.lang.StrictMath.tanh() method is used to return the hyperbolic tan of a double value passed as parameter to the function. The hyperbolic tan of x is defined by the formula where e denotes the Euler’s number.
Syntax:
public static double tanh(double x)
Parameters: The function accepts a single parameter x of double type and refers to the value whose hyperbolic tangent equivalence is to be returned.
Return Values: This method returns a double value which is the hyperbolic tangent of x. The absolute value of exact tanh never exceeds 1. The following cases are considered:
- The function returns NaN if the argument is NaN.
- The function returns +1.0 and -1.0 for positive infinity and negative infinity respectively.
- The function returns zero with the same sign as the argument if the argument is zero
Examples:
Input: 0.7853981633974483 Output: 0.6557942026326724 Input: 4.0 Output: 0.999329299739067
Below programs illustrate the java.lang.StrictMath.tanh() method:
Program 1:
// Java Program to demonstrate tanh() import java.io.*; import java.math.*; import java.lang.*; class GFG { public static void main(String[] args) { double x = ( 45 * Math.PI) / 180 ; // Display the hyperbolic tan of the value System.out.println( "Hyperbolic tan of " + x + " = " + StrictMath.tanh(x)); } } |
Hyperbolic tan of 0.7853981633974483 = 0.6557942026326724
Program 2:
// Java Program to illustrate // StrictMath.tanh() function import java.io.*; import java.math.*; import java.lang.*; class GFG { public static void main(String[] args) { double x1 = 180 / ( 0.0 ), x2 = 0 ; // Display the hyperbolic tan of the values System.out.println( "Hyperbolic tan of " + x1 + " = " + StrictMath.tanh(x1)); System.out.println( "Hyperbolic tan of " + x2 + " = " + StrictMath.tanh(x2)); } } |
Hyperbolic tan of Infinity = 1.0 Hyperbolic tan of 0.0 = 0.0
Reference: https://docs.oracle.com/javase/8/docs/api/java/lang/StrictMath.html#tanh()