Wednesday, January 1, 2025
Google search engine
HomeData Modelling & AIProduct of Array except itself

Product of Array except itself

Given an array arr[] of n integers, construct a Product Array prod[] (of the same size) such that prod[i] is equal to the product of all the elements of arr[] except arr[i]. 

Note: Solve it without the division operator in O(n) time.

Example : 

Input: arr[]  = {10, 3, 5, 6, 2}
Output: prod[]  = {180, 600, 360, 300, 900}
3 * 5 * 6 * 2 product of other array 
elements except 10 is 180
10 * 5 * 6 * 2 product of other array 
elements except 3 is 600
10 * 3 * 6 * 2 product of other array 
elements except 5 is 360
10 * 3 * 5 * 2 product of other array 
elements except 6 is 300
10 * 3 * 6 * 5 product of other array 
elements except 2 is 900


Input: arr[]  = {1, 2, 3, 4, 5}
Output: prod[]  = {120, 60, 40, 30, 24 }
2 * 3 * 4 * 5  product of other array 
elements except 1 is 120
1 * 3 * 4 * 5  product of other array 
elements except 2 is 60
1 * 2 * 4 * 5  product of other array 
elements except 3 is 40
1 * 2 * 3 * 5  product of other array 
elements except 4 is 30
1 * 2 * 3 * 4  product of other array 
elements except 5 is 24
Recommended Practice

A naive approach: Store the product of all the elements is variable and then iterate the array and add product/current_index_value in a new array. and then return this new array. But as per the problem statement this is not a valid approach:

An approach using prefix and suffix multiplication: Create two extra space, i.e. two extra arrays to store the product of all the array elements from start, up to that index and another array to store the product of all the array elements from the end of the array to that index. 
To get the product excluding that index, multiply the prefix product up to index i-1 with the suffix product up to index i+1.

Algorithm: 

  1. Create two array prefix and suffix of length n, i.e length of the original array, initialize prefix[0] = 1 and suffix[n-1] = 1 and also another array to store the product.
  2. Traverse the array from second index to end.
  3. For every index i update prefix[i] as prefix[i] = prefix[i-1] * array[i-1], i.e store the product upto i-1 index from the start of array.
  4. Traverse the array from second last index to start.
  5. For every index i update suffix[i] as suffix[i] = suffix[i+1] * array[i+1], i.e store the product upto i+1 index from the end of array
  6. Traverse the array from start to end.
  7. For every index i the output will be prefix[i] * suffix[i], the product of the array element except that element.

C++




// C++ implementation of above approach
#include <bits/stdc++.h>
using namespace std;
  
/* Function to print product array
for a given array arr[] of size n */
void productArray(int arr[], int n)
{
  
    // Base case
    if (n == 1) {
        cout << 0;
        return;
    }
    /* Allocate memory for temporary
arrays left[] and right[] */
    int* left = new int[sizeof(int) * n];
    int* right = new int[sizeof(int) * n];
  
    /* Allocate memory for the product array */
    int* prod = new int[sizeof(int) * n];
  
    int i, j;
  
    /* Left most element of left
array is always 1 */
    left[0] = 1;
  
    /* Right most element of right
array is always 1 */
    right[n - 1] = 1;
  
    /* Construct the left array */
    for (i = 1; i < n; i++)
        left[i] = arr[i - 1] * left[i - 1];
  
    /* Construct the right array */
    for (j = n - 2; j >= 0; j--)
        right[j] = arr[j + 1] * right[j + 1];
  
    /* Construct the product array using
        left[] and right[] */
    for (i = 0; i < n; i++)
        prod[i] = left[i] * right[i];
  
    /* print the constructed prod array */
    for (i = 0; i < n; i++)
        cout << prod[i] << " ";
  
    return;
}
  
/* Driver code*/
int main()
{
    int arr[] = { 10, 3, 5, 6, 2 };
    int n = sizeof(arr) / sizeof(arr[0]);
    cout << "The product array is: \n";
    productArray(arr, n);
}
  
// This is code is contributed by rathbhupendra


C




#include <stdio.h>
#include <stdlib.h>
  
/* Function to print product array
for a given array arr[] of size n */
void productArray(int arr[], int n)
{
  
    // Base case
    if (n == 1) {
        printf("0");
        return;
    }
  
    /* Allocate memory for temporary
arrays left[] and right[] */
    int* left = (int*)malloc(sizeof(int) * n);
    int* right = (int*)malloc(sizeof(int) * n);
  
    /* Allocate memory for the product array */
    int* prod = (int*)malloc(sizeof(int) * n);
  
    int i, j;
  
    /* Left most element of left array
is always 1 */
    left[0] = 1;
  
    /* Right most element of right
array is always 1 */
    right[n - 1] = 1;
  
    /* Construct the left array */
    for (i = 1; i < n; i++)
        left[i] = arr[i - 1] * left[i - 1];
  
    /* Construct the right array */
    for (j = n - 2; j >= 0; j--)
        right[j] = arr[j + 1] * right[j + 1];
  
    /* Construct the product array using
    left[] and right[] */
    for (i = 0; i < n; i++)
        prod[i] = left[i] * right[i];
  
    /* print the constructed prod array */
    for (i = 0; i < n; i++)
        printf("%d ", prod[i]);
  
    return;
}
  
/* Driver program to test above functions */
int main()
{
    int arr[] = { 10, 3, 5, 6, 2 };
    int n = sizeof(arr) / sizeof(arr[0]);
    printf("The product array is: \n");
    productArray(arr, n);
    getchar();
}


Java




class ProductArray {
    /* Function to print product array
    for a given array arr[] of size n */
    void productArray(int arr[], int n)
    {
  
        // Base case
        if (n == 1) {
            System.out.print(0);
            return;
        }
        // Initialize memory to all arrays
        int left[] = new int[n];
        int right[] = new int[n];
        int prod[] = new int[n];
  
        int i, j;
  
        /* Left most element of left array
is always 1 */
        left[0] = 1;
  
        /* Right most element of right
array is always 1 */
        right[n - 1] = 1;
  
        /* Construct the left array */
        for (i = 1; i < n; i++)
            left[i] = arr[i - 1] * left[i - 1];
  
        /* Construct the right array */
        for (j = n - 2; j >= 0; j--)
            right[j] = arr[j + 1] * right[j + 1];
  
        /* Construct the product array using
        left[] and right[] */
        for (i = 0; i < n; i++)
            prod[i] = left[i] * right[i];
  
        /* print the constructed prod array */
        for (i = 0; i < n; i++)
            System.out.print(prod[i] + " ");
  
        return;
    }
  
    /* Driver program to test the above function */
    public static void main(String[] args)
    {
        ProductArray pa = new ProductArray();
        int arr[] = { 10, 3, 5, 6, 2 };
        int n = arr.length;
        System.out.println("The product array is : ");
        pa.productArray(arr, n);
    }
}
  
// This code has been contributed by Mayank Jaiswal


Python3




# Python implementation of the above approach
  
# Function to print product array for a given array
# arr[] of size n
  
  
def productArray(arr, n):
  
    # Base case
    if(n == 1):
        print(0)
        return
  
    # Allocate memory for temporary arrays left[] and right[]
    left = [0]*n
    right = [0]*n
  
    # Allocate memory for the product array
    prod = [0]*n
  
    # Left most element of left array is always 1
    left[0] = 1
  
    # Right most element of right array is always 1
    right[n - 1] = 1
  
    # Construct the left array
    for i in range(1, n):
        left[i] = arr[i - 1] * left[i - 1]
  
    # Construct the right array
    for j in range(n-2, -1, -1):
        right[j] = arr[j + 1] * right[j + 1]
  
    # Construct the product array using
    # left[] and right[]
    for i in range(n):
        prod[i] = left[i] * right[i]
  
    # print the constructed prod array
    for i in range(n):
        print(prod[i], end=' ')
  
  
# Driver code
arr = [10, 3, 5, 6, 2]
n = len(arr)
print("The product array is:")
productArray(arr, n)
  
# This code is contributed by ankush_953


C#




using System;
  
class GFG {
  
    /* Function to print product array
    for a given array arr[] of size n */
    static void productArray(int[] arr, int n)
    {
  
        // Base case
        if (n == 1) {
            Console.Write(0);
            return;
        }
        // Initialize memory to all arrays
        int[] left = new int[n];
        int[] right = new int[n];
        int[] prod = new int[n];
  
        int i, j;
  
        /* Left most element of left array
        is always 1 */
        left[0] = 1;
  
        /* Right most element of right
        array is always 1 */
        right[n - 1] = 1;
  
        /* Construct the left array */
        for (i = 1; i < n; i++)
            left[i] = arr[i - 1] * left[i - 1];
  
        /* Construct the right array */
        for (j = n - 2; j >= 0; j--)
            right[j] = arr[j + 1] * right[j + 1];
  
        /* Construct the product array using
        left[] and right[] */
        for (i = 0; i < n; i++)
            prod[i] = left[i] * right[i];
  
        /* print the constructed prod array */
        for (i = 0; i < n; i++)
            Console.Write(prod[i] + " ");
  
        return;
    }
  
    /* Driver program to test the above function */
    public static void Main()
    {
        int[] arr = { 10, 3, 5, 6, 2 };
        int n = arr.Length;
        Console.Write("The product array is :\n");
  
        productArray(arr, n);
    }
}
  
// This code is contributed by nitin mittal.


PHP




<?php 
// Function to print product 
// array for a given array 
// arr[] of size n 
function productArray($arr, $n
  
    // Base case
    if($n == 1) {
        echo "0";
        return;
    }
    // Initialize memory 
    // to all arrays 
    $left = array(); 
    $right = array(); 
    $prod = array(); 
  
    $i; $j
  
    // Left most element of 
    // left array is always 1 
    $left[0] = 1; 
  
    // Right most element of 
    // right array is always 1 
    $right[$n - 1] = 1; 
  
    // Construct the left array 
    for ($i = 1; $i < $n; $i++) 
        $left[$i] = $arr[$i - 1] * 
                    $left[$i - 1]; 
  
    // Construct the right array 
    for ($j = $n - 2; $j >= 0; $j--) 
        $right[$j] = $arr[$j + 1] * 
                    $right[$j + 1]; 
  
    // Construct the product array 
    // using left[] and right[] 
    for ($i = 0; $i < $n; $i++) 
        $prod[$i] = $left[$i] * 
                    $right[$i]; 
  
    // print the constructed prod array 
    for ($i = 0; $i < $n; $i++) 
        echo $prod[$i], " "
  
    return
  
// Driver Code 
$arr = array(10, 3, 5, 6, 2); 
$n = count($arr); 
echo "The product array is : \n"
productArray($arr, $n); 
  
// This code has been contributed by anuj_67. 
?>


Javascript




<script>
    /* Function to print product array
    for a given array arr[] of size n */
    function productArray(arr, n)
    {
   
        // Base case
        if (n == 1) {
            document.write(0);
            return;
        }
          
        // Initialize memory to all arrays
        let left = new Array(n);
        let right = new Array(n);
        let prod = new Array(n);
   
        let i, j;
   
        /* Left most element of left array
        is always 1 */
        left[0] = 1;
   
        /* Right most element of right
        array is always 1 */
        right[n - 1] = 1;
   
        /* Construct the left array */
        for (i = 1; i < n; i++)
            left[i] = arr[i - 1] * left[i - 1];
   
        /* Construct the right array */
        for (j = n - 2; j >= 0; j--)
            right[j] = arr[j + 1] * right[j + 1];
   
        /* Construct the product array using
        left[] and right[] */
        for (i = 0; i < n; i++)
            prod[i] = left[i] * right[i];
   
        /* print the constructed prod array */
        for (i = 0; i < n; i++)
            document.write(prod[i] + " ");
   
        return;
    }
      
    // Driver code
    let arr = [ 10, 3, 5, 6, 2 ];
    let n = arr.length;
    document.write("The product array is :" + "</br>");
  
    productArray(arr, n);
  
// This code is contributed by mukesh07.
</script>


Output

The product array is: 
180 600 360 300 900 

 Complexity Analysis: 

  • Time Complexity: O(n). 
    The array needs to be traversed three times, so the time complexity is O(n).
  • Auxiliary Space: O(n). 
    Two extra arrays and one array to store the output is needed so the space complexity is O(n)

Note: The above method can be optimized to work in space complexity O(1). Thanks to Dileep for suggesting the below solution.

Efficient Approach: In the previous solution, two extra arrays were created to store the prefix and suffix, in this solution store the prefix and suffix product in the output array (or product array) itself. Thus reducing the space required.

Algorithm: 

  1. Create an array product and initialize its value to 1 and a variable temp = 1.
  2. Traverse the array from start to end.
  3. For every index i update product[i] as product[i] = temp and temp = temp * array[i], i.e store the product upto i-1 index from the start of array.
  4. initialize temp = 1 and traverse the array from last index to start.
  5. For every index i update product[i] as product[i] = product[i] * temp and temp = temp * array[i], i.e multiply with the product upto i+1 index from the end of array.
  6. Print the product array.

C++




// C++ implementation of above approach
#include <bits/stdc++.h>
using namespace std;
  
/* Function to print product array
for a given array arr[] of size n */
void productArray(int arr[], int n)
{
  
    // Base case
    if (n == 1) {
        cout << 0;
        return;
    }
  
    int i, temp = 1;
  
    /* Allocate memory for the product array */
    int* prod = new int[(sizeof(int) * n)];
  
    /* Initialize the product array as 1 */
    memset(prod, 1, n);
  
    /* In this loop, temp variable contains product of
       elements on left side excluding arr[i] */
    for (i = 0; i < n; i++) {
        prod[i] = temp;
        temp *= arr[i];
    }
  
    /* Initialize temp to 1
    for product on right side */
    temp = 1;
  
    /* In this loop, temp variable contains product of
       elements on right side excluding arr[i] */
    for (i = n - 1; i >= 0; i--) {
        prod[i] *= temp;
        temp *= arr[i];
    }
  
    /* print the constructed prod array */
    for (i = 0; i < n; i++)
        cout << prod[i] << " ";
  
    return;
}
  
// Driver Code
int main()
{
    int arr[] = { 10, 3, 5, 6, 2 };
    int n = sizeof(arr) / sizeof(arr[0]);
    cout << "The product array is: \n";
    productArray(arr, n);
}
  
// This code is contributed by rathbhupendra


C




// C implementation of above approach
#include <stdio.h>
#include <string.h>
// Function to print product array for a given array arr[]
// of size n
void productArray(int arr[], int n)
{
  
    // Base case
    if (n == 1) {
        printf("0");
        return;
    }
  
    int i, temp = 1;
  
    /* Allocate memory for the product array */
    int prod[n];
  
    /* Initialize the product array as 1 */
    memset(prod, 1, n);
  
    /* In this loop, temp variable contains product of
       elements on left side excluding arr[i] */
    for (i = 0; i < n; i++) {
        prod[i] = temp;
        temp *= arr[i];
    }
  
    /* Initialize temp to 1
    for product on right side */
    temp = 1;
  
    /* In this loop, temp variable contains product of
       elements on right side excluding arr[i] */
    for (i = n - 1; i >= 0; i--) {
        prod[i] *= temp;
        temp *= arr[i];
    }
  
    /* print the constructed prod array */
    for (i = 0; i < n; i++)
        printf("%d ", prod[i]);
  
    return;
}
  
// Driver Code
int main()
{
    int arr[] = { 10, 3, 5, 6, 2 };
    int n = sizeof(arr) / sizeof(arr[0]);
    printf("The product array is: \n");
    productArray(arr, n);
}
  
// This code is contributed by Aditya Kumar (adityakumar129)


Java




class ProductArray {
    void productArray(int arr[], int n)
    {
  
        // Base case
        if (n == 1) {
            System.out.print("0");
            return;
        }
  
        int i, temp = 1;
  
        /* Allocate memory for the product array */
        int prod[] = new int[n];
  
        /* Initialize the product array as 1 */
        for (int j = 0; j < n; j++)
            prod[j] = 1;
  
        /* In this loop, temp variable contains product of
           elements on left side excluding arr[i] */
        for (i = 0; i < n; i++) {
            prod[i] = temp;
            temp *= arr[i];
        }
  
        /* Initialize temp to 1 for product on right side */
        temp = 1;
  
        /* In this loop, temp variable contains product of
           elements on right side excluding arr[i] */
        for (i = n - 1; i >= 0; i--) {
            prod[i] *= temp;
            temp *= arr[i];
        }
  
        /* print the constructed prod array */
        for (i = 0; i < n; i++)
            System.out.print(prod[i] + " ");
  
        return;
    }
  
    /* Driver program to test above functions */
    public static void main(String[] args)
    {
        ProductArray pa = new ProductArray();
        int arr[] = { 10, 3, 5, 6, 2 };
        int n = arr.length;
        System.out.println("The product array is : ");
        pa.productArray(arr, n);
    }
}
  
// This code has been contributed by Mayank Jaiswal


Python3




# Python3 program for A Product Array Puzzle
def productArray(arr, n):
  
    # Base case
    if n == 1:
        print(0)
        return
  
    i, temp = 1, 1
  
    # Allocate memory for the product array
    prod = [1 for i in range(n)]
  
    # Initialize the product array as 1
  
    # In this loop, temp variable contains product of
    # elements on left side excluding arr[i]
    for i in range(n):
        prod[i] = temp
        temp *= arr[i]
  
    # Initialize temp to 1 for product on right side
    temp = 1
  
    # In this loop, temp variable contains product of
    # elements on right side excluding arr[i]
    for i in range(n - 1, -1, -1):
        prod[i] *= temp
        temp *= arr[i]
  
    # Print the constructed prod array
    for i in range(n):
        print(prod[i], end=" ")
  
    return
  
  
# Driver Code
arr = [10, 3, 5, 6, 2]
n = len(arr)
print("The product array is: n")
productArray(arr, n)
  
# This code is contributed by mohit kumar


C#




using System;
  
class GFG {
  
    static void productArray(int[] arr, int n)
    {
  
        // Base case
        if (n == 1) {
            Console.Write(0);
            return;
        }
        int i, temp = 1;
  
        /* Allocate memory for the product
        array */
        int[] prod = new int[n];
  
        /* Initialize the product array as 1 */
        for (int j = 0; j < n; j++)
            prod[j] = 1;
  
        /* In this loop, temp variable contains
        product of elements on left side
        excluding arr[i] */
        for (i = 0; i < n; i++) {
            prod[i] = temp;
            temp *= arr[i];
        }
  
        /* Initialize temp to 1 for product on
        right side */
        temp = 1;
  
        /* In this loop, temp variable contains
        product of elements on right side
        excluding arr[i] */
        for (i = n - 1; i >= 0; i--) {
            prod[i] *= temp;
            temp *= arr[i];
        }
  
        /* print the constructed prod array */
        for (i = 0; i < n; i++)
            Console.Write(prod[i] + " ");
  
        return;
    }
  
    /* Driver program to test above functions */
    public static void Main()
    {
        int[] arr = { 10, 3, 5, 6, 2 };
        int n = arr.Length;
        Console.WriteLine("The product array is : ");
  
        productArray(arr, n);
    }
}
  
// This code is contributed by nitin mittal.


PHP




<?php
// PHP program for 
// A Product Array Puzzle
      
function productArray($arr, $n
    {
  
        // Base case
        if ($n == 1) {
            echo "0";
            return;
        }
        $i; $temp = 1;
          
        /* Allocate memory for 
           the productarray */
        $prod = array();
  
        /* Initialize the product 
           array as 1 */
        for( $j = 0; $j < $n; $j++)
            $prod[$j] = 1;
  
        /* In this loop, temp 
           variable contains
           product of elements
           on left side
           excluding arr[i] */
        for ($i = 0; $i < $n; $i++) 
        {
            $prod[$i] = $temp;
            $temp *= $arr[$i];
        }
  
        /* Initialize temp to 1 
           for product on right
           side */
        $temp = 1;
  
        /* In this loop, temp 
           variable contains
           product of elements 
           on right side 
           excluding arr[i] */
        for ($i = $n - 1; $i >= 0; $i--) 
        {
            $prod[$i] *= $temp;
            $temp *= $arr[$i];
        }
  
        /* print the constructed
           prod array */
        for ($i = 0; $i < $n; $i++)
            echo $prod[$i], " ";
  
        return;
    }
  
        // Driver Code    
        $arr = array(10, 3, 5, 6, 2);
        $n = count($arr);
        echo "The product array is : \n";
        productArray($arr, $n);
      
// This code is contributed by anuj_67.
?>


Javascript




<script>
  
    function productArray(arr , n)
    {
  
        // Base case
        if (n == 1) {
            document.write("0");
            return;
        }
  
        var i, temp = 1;
  
        /* Allocate memory for the product array */
        var prod = Array(n).fill(0);
  
        /* Initialize the product array as 1 */
        for (j = 0; j < n; j++)
            prod[j] = 1;
  
        /*
         In this loop, temp variable contains 
         product of elements on left side
        excluding arr[i]
         */
        for (i = 0; i < n; i++) {
            prod[i] = temp;
            temp *= arr[i];
        }
  
        /* Initialize temp to 1 for 
        product on right side */
        temp = 1;
  
        /*
          In this loop, temp variable contains
         product of elements on right side
         excluding arr[i]
         */
        for (i = n - 1; i >= 0; i--) {
            prod[i] *= temp;
            temp *= arr[i];
        }
  
        /* print the constructed prod array */
        for (i = 0; i < n; i++)
            document.write(prod[i] + " ");
  
        return;
    }
  
    /* Driver program to test above functions */
      
          
        var arr = [ 10, 3, 5, 6, 2 ];
        var n = arr.length;
        document.write("The product array is : ");
        productArray(arr, n);
  
// This code contributed by Rajput-Ji 
  
</script>


Output

The product array is: 
180 600 360 300 900 

Complexity Analysis: 

  • Time Complexity: O(n). 
    The original array needs to be traversed only once, so the time complexity is constant.
  • Auxiliary Space: O(n). 
    Even though the extra arrays are removed, the space complexity remains O(n), as the product array is still needed.

A product array puzzle | Set 2 (O(1) Space)
Related Problem: 
Construct an Array from XOR of all elements of array except element at same index
Please write comments if you find the above code/algorithm incorrect, or find better ways to solve the same problem.

Feeling lost in the world of random DSA topics, wasting time without progress? It’s time for a change! Join our DSA course, where we’ll guide you on an exciting journey to master DSA efficiently and on schedule.
Ready to dive in? Explore our Free Demo Content and join our DSA course, trusted by over 100,000 neveropen!

RELATED ARTICLES

Most Popular

Recent Comments