Tuesday, November 19, 2024
Google search engine
HomeData Modelling & AIPrint all prime numbers less than or equal to N

Print all prime numbers less than or equal to N

Given a number N, the task is to print all prime numbers less than or equal to N.
Examples: 
 

Input: 7
Output: 2, 3, 5, 7

Input: 13
Output: 2, 3, 5, 7, 11, 13 

 

Naive Approach: Iterate from 2 to N, and check for prime. If it is a prime number, print the number. 
Below is the implementation of the above approach: 
 

C++




// C++ program to print all primes less than N
#include <bits/stdc++.h>
using namespace std;
  
// function check whether a number is prime or not
bool isPrime(int n)
{
    // Corner case
    if (n <= 1)
        return false;
  
    // Check from 2 to n-1
    for (int i = 2; i < n; i++)
        if (n % i == 0)
            return false;
  
    return true;
}
  
// Function to print primes
void printPrime(int n)
{
    for (int i = 2; i <= n; i++)
        if (isPrime(i))
            cout << i << " ";
}
  
// Driver Code
int main()
{
    int n = 7;
    printPrime(n);
}


C




// C program to print all primes less than N
#include <stdbool.h>
#include <stdio.h>
  
// function check whether a number is prime or not
bool isPrime(int n)
{
    // Corner case
    if (n <= 1)
        return false;
  
    // Check from 2 to n-1
    for (int i = 2; i < n; i++)
        if (n % i == 0)
            return false;
  
    return true;
}
  
// Function to print primes
void printPrime(int n)
{
    for (int i = 2; i <= n; i++)
        if (isPrime(i))
            printf("%d ", i);
}
  
// Driver Code
int main()
{
    int n = 7;
    printPrime(n);
}
  
// This code is contributed by Sania Kumari Gupta


Java




// Java program to print
// all primes less than N
class GFG {
    // function check whether
    // a number is prime or not
    static boolean isPrime(int n)
    {
        // Corner case
        if (n <= 1)
            return false;
  
        // Check from 2 to n-1
        for (int i = 2; i < n; i++)
            if (n % i == 0)
                return false;
  
        return true;
    }
  
    // Function to print primes
    static void printPrime(int n)
    {
        for (int i = 2; i <= n; i++) {
            if (isPrime(i))
                System.out.print(i + " ");
        }
    }
  
    // Driver Code
    public static void main(String[] args)
    {
        int n = 7;
        printPrime(n);
    }
}
  
// This code is contributed
// by ChitraNayal


Python3




# Python3 program to print 
# all primes less than N
  
# Function to check whether 
# a number is prime or not .
def isPrime(n):
      
    # Corner case
    if n <= 1 :
        return False
  
    # check from 2 to n-1
    for i in range(2, n):
        if n % i == 0:
            return False
  
    return True
  
# Function to print primes
def printPrime(n):
    for i in range(2, n + 1):
        if isPrime(i):
            print(i, end = " ")
  
# Driver code
if __name__ == "__main__" :
    n = 7
    # function calling
    printPrime(n)
      
# This code is contributed 
# by Ankit Rai


C#




// C# program to print 
// all primes less than N
using System;
  
class GFG 
{
// function check whether 
// a number is prime or not
static bool isPrime(int n)
{
      
    // Corner case
    if (n <= 1)
        return false;
      
    // Check from 2 to n-1
    for (int i = 2; i < n; i++)
        if (n % i == 0)
            return false;
      
    return true;
}
      
// Function to print primes
static void printPrime(int n)
{
for (int i = 2; i <= n; i++) 
{
    if (isPrime(i))
        Console.Write(i + " ");
}
}
  
// Driver Code
public static void Main() 
{
    int n = 7;
    printPrime(n);
}
}
  
// This code is contributed 
// by ChitraNayal


PHP




<?php 
// PHP program to print 
// all primes less than N
  
// function check whether 
// a number is prime or not
function isPrime($n)
{
    // Corner case
    if ($n <= 1)
        return false;
  
    // Check from 2 to n-1
    for ($i = 2; $i < $n; $i++)
        if ($n % $i == 0)
            return false;
  
    return true;
}
  
// Function to print primes
function printPrime($n)
{
    for ($i = 2; $i <= $n; $i++) 
    {
        if (isPrime($i))
            echo $i . " ";
    }
}
  
// Driver Code
$n = 7;
printPrime($n);
  
// This code is contributed 
// by ChitraNayal
?>


Javascript




<script>
  
// Javascript program to print all primes 
// less than N 
  
  
// function check whether a number 
// is prime or not 
function isPrime(n) 
    // Corner case 
    if (n <= 1) 
        return false
  
    // Check from 2 to n-1 
    for (let i = 2; i < n; i++) 
        if (n % i == 0) 
            return false
  
    return true
// Function to print primes 
function printPrime(n) 
    for (let i = 2; i <= n; i++) { 
        if (isPrime(i)) 
            document.write(i +" "); 
    
// Driver Code 
  
    let n = 7; 
    printPrime(n); 
  
// This code is contributed by Mayank Tyagi
  
</script>


Output: 
 

2 3 5 7

Time Complexity: O(N * N)
Auxiliary Space: O(1)

A better approach is based on the fact that one of the divisors must be smaller than or equal to ?n. So we check for divisibility only till ?n. 
 

C++




// C++ program to print all primes
// less than N
#include <bits/stdc++.h>
using namespace std;
  
// function check whether a number
// is prime or not
bool isPrime(int n)
{
    // Corner cases
    if (n <= 1)
        return false;
    if (n <= 3)
        return true;
  
    // This is checked so that we can skip
    // middle five numbers in below loop
    if (n % 2 == 0 || n % 3 == 0)
        return false;
  
    for (int i = 5; i * i <= n; i = i + 6)
        if (n % i == 0 || n % (i + 2) == 0)
            return false;
  
    return true;
}
  
// Function to print primes
void printPrime(int n)
{
    for (int i = 2; i <= n; i++) {
        if (isPrime(i))
            cout << i << " ";
    }
}
// Driver Code
int main()
{
    int n = 7;
    printPrime(n);
}


Java




// Java program to print 
// all primes less than N
import java.io.*;
  
class GFG
{
  
// function check
// whether a number
// is prime or not
static boolean isPrime(int n)
{
    // Corner cases
    if (n <= 1)
        return false;
    if (n <= 3)
        return true;
  
    // This is checked so 
    // that we can skip
    // middle five numbers
    // in below loop
    if (n % 2 == 0 || 
        n % 3 == 0)
        return false;
  
    for (int i = 5;
             i * i <= n; i = i + 6)
        if (n % i == 0 ||
            n % (i + 2) == 0)
            return false;
  
    return true;
}
  
// Function to print primes
static void printPrime(int n)
{
    for (int i = 2; i <= n; i++)
    {
        if (isPrime(i))
            System.out.print(i + " ");
    }
}
  
// Driver Code
public static void main (String[] args)
{
    int n = 7;
    printPrime(n);
}
}
  
// This code is contributed
// by anuj_67.


C#




// C# program to print 
// all primes less than N
using System;
  
class GFG
{
  
// function check
// whether a number
// is prime or not
static bool isPrime(int n)
{
    // Corner cases
    if (n <= 1)
        return false;
    if (n <= 3)
        return true;
  
    // This is checked so 
    // that we can skip
    // middle five numbers
    // in below loop
    if (n % 2 == 0 || 
        n % 3 == 0)
        return false;
  
    for (int i = 5;
             i * i <= n; i = i + 6)
        if (n % i == 0 ||
            n % (i + 2) == 0)
            return false;
  
    return true;
}
  
// Function to print primes
static void printPrime(int n)
{
    for (int i = 2; i <= n; i++)
    {
        if (isPrime(i))
            Console.Write(i + " ");
    }
}
  
// Driver Code
public static void Main ()
{
    int n = 7;
    printPrime(n);
}
}
  
// This code is contributed 
// by ChitraNayal


Python3




# function to check if the number is 
# prime or not 
def isPrime(n) :
    # Corner cases
    if (n <= 1) :
        return False
    if (n <= 3) :
        return True
   
    # This is checked so that we can skip 
    # middle five numbers in below loop
    if (n % 2 == 0 or n % 3 == 0) :
        return False
   
    i = 5
    while(i * i <= n) :
        if (n % i == 0 or n % (i + 2) == 0) :
            return False
        i = i + 6
   
    return True 
  
# print all prime numbers 
# less than equal to N 
def printPrime(n):
    for i in range(2, n + 1):
        if isPrime(i):
            print (i, end =" "
   
n = 7            
printPrime(n) 


Javascript




<script>
// Javascript program to print all primes
// less than N
  
// function check whether a number
// is prime or not
function isPrime(n)
{
  
    // Corner cases
    if (n <= 1)
        return false;
    if (n <= 3)
        return true;
  
    // This is checked so that we can skip
    // middle five numbers in below loop
    if (n % 2 == 0 || n % 3 == 0)
        return false;
  
    for (let i = 5; i * i <= n; i = i + 6)
        if (n % i == 0 || n % (i + 2) == 0)
            return false;
  
    return true;
}
  
// Function to print primes
function printPrime(n)
{
    for (let i = 2; i <= n; i++) {
        if (isPrime(i))
            document.write(i + " "); 
    }
}
  
// Driver Code
let n = 7;
printPrime(n);
  
// This code is contributed by subhammahato348.
</script>


PHP




<?php 
// PHP program to print 
// all primes less than N
  
// function check whether 
// a number is prime or not
function isPrime($n)
{
    // Corner cases
    if ($n <= 1)
        return false;
    if ($n <= 3)
        return true;
  
    // This is checked so that
    // we can skip middle five
    // numbers in below loop
    if ($n % 2 == 0 || $n % 3 == 0)
        return false;
  
    for ($i = 5; 
         $i * $i <= $n; $i = $i + 6)
        if ($n % $i == 0 || 
            $n % ($i + 2) == 0)
            return false;
  
    return true;
}
  
// Function to print primes
function printPrime($n)
{
    for ($i = 2; $i <= $n; $i++) 
    {
        if (isPrime($i))
            echo $i . " ";
    }
}
  
// Driver Code
$n = 7;
printPrime($n);
  
// This code is contributed 
// by ChitraNayal
?>


Output: 

2 3 5 7

 

Time Complexity: O(N3/2)

Auxiliary Space: O(1)
The best solution is to use Sieve of Eratosthenes. The time complexity is O(N * loglog(N))
 

Feeling lost in the world of random DSA topics, wasting time without progress? It’s time for a change! Join our DSA course, where we’ll guide you on an exciting journey to master DSA efficiently and on schedule.
Ready to dive in? Explore our Free Demo Content and join our DSA course, trusted by over 100,000 neveropen!

RELATED ARTICLES

Most Popular

Recent Comments