Wednesday, January 1, 2025
Google search engine
HomeData Modelling & AIReverse actual bits of the given number

Reverse actual bits of the given number

Given a non-negative integer n. The problem is to reverse the bits of n and print the number obtained after reversing the bits. Note that the actual binary representation of the number is being considered for reversing the bits, no leadings 0’s are being considered.
Examples : 
 

Input : 11
Output : 13
Explanation: (11)10 = (1011)2.
After reversing the bits we get:
(1101)2 = (13)10.

Input : 10
Output : 5
Explanation : (10)10 = (1010)2.
After reversing the bits we get:
(0101)2 = (101)2
        = (5)10.

Recommended Practice

In this approach, one by one bit in the binary representation of n is being obtained with the help of bitwise right shift operation and they are being accumulated in rev with the help of bitwise left shift operation. 
Algorithm: 
 

 

C++




// C++ implementation to reverse bits of a number
#include <bits/stdc++.h>
 
using namespace std;
 
// function to reverse bits of a number
unsigned int reverseBits(unsigned int n)
{
    unsigned int rev = 0;
 
    // traversing bits of 'n' from the right
    while (n > 0) {
        // bitwise left shift
        // 'rev' by 1
        rev <<= 1;
 
        // if current bit is '1'
        if (n & 1 == 1)
            rev ^= 1;
 
        // bitwise right shift
        // 'n' by 1
        n >>= 1;
    }
 
    // required number
    return rev;
}
 
// Driver program to test above
int main()
{
    unsigned int n = 11;
    cout << reverseBits(n);
    return 0;
}


C




// C implementation to reverse bits of a number
#include <stdio.h>
 
// function to reverse bits of a number
unsigned int reverseBits(unsigned int n)
{
    unsigned int rev = 0;
 
    // traversing bits of 'n' from the right
    while (n > 0) {
        // bitwise left shift 'rev' by 1
        rev <<= 1;
 
        // if current bit is '1'
        if (n & 1 == 1)
            rev ^= 1;
 
        // bitwise right shift 'n' by 1
        n >>= 1;
    }
    // required number
    return rev;
}
 
// Driver program to test above
int main()
{
    unsigned int n = 11;
    printf("%u", reverseBits(n));
    return 0;
}
 
// This code is contributed by Sania Kumari Gupta
// (kriSania804)


Java




import java.io.*;
 
// Java implementation to
// reverse bits of a number
class GFG {
    // function to reverse bits of a number
    public static int reverseBits(int n)
    {
        int rev = 0;
 
        // traversing bits of 'n'
        // from the right
        while (n > 0) {
            // bitwise left shift
            // 'rev' by 1
            rev <<= 1;
 
            // if current bit is '1'
            if ((int)(n & 1) == 1)
                rev ^= 1;
 
            // bitwise right shift
            //'n' by 1
            n >>= 1;
        }
        // required number
        return rev;
    }
 
    // Driver code
    public static void main(String[] args)
    {
        int n = 11;
        System.out.println(reverseBits(n));
    }
}
 
// This code is contributed
// by prerna saini.


Python3




# Python 3 implementation to
# reverse bits of a number
 
 
# function to reverse
# bits of a number
def reverseBits(n):
 
    rev = 0
 
    # traversing bits of 'n' from the right
    while (n > 0):
 
        # bitwise left shift 'rev' by 1
        rev = rev << 1
 
        # if current bit is '1'
        if (n & 1 == 1):
            rev = rev ^ 1
 
        # bitwise right shift 'n' by 1
        n = n >> 1
 
    # required number
    return rev
 
 
# Driver code
n = 11
print(reverseBits(n))
 
 
# This code is contributed
# by Nikita Tiwari.


C#




// C# implementation to
// reverse bits of a number
using System;
class GFG {
    // function to reverse bits of a number
    public static int reverseBits(int n)
    {
        int rev = 0;
 
        // traversing bits of 'n'
        // from the right
        while (n > 0) {
            // bitwise left shift
            // 'rev' by 1
            rev <<= 1;
 
            // if current bit is '1'
            if ((int)(n & 1) == 1)
                rev ^= 1;
 
            // bitwise right shift
            //'n' by 1
            n >>= 1;
        }
        // required number
        return rev;
    }
 
    // Driver code
    public static void Main()
    {
        int n = 11;
        Console.WriteLine(reverseBits(n));
    }
}
 
// This code is contributed
// by vt_m.


PHP




<?php
// PHP implementation to reverse
// bits of a number
 
// function to reverse
// bits of a number
function reverseBits($n)
{
    $rev = 0;
     
    // traversing bits of 'n'
    // from the right
    while ($n > 0)
    {
        // bitwise left shift
        // 'rev' by 1
        $rev <<= 1;
         
        // if current bit is '1'
        if ($n & 1 == 1)
            $rev ^= 1;
         
        // bitwise right shift
        // 'n' by 1
        $n >>= 1;
             
    }
     
    // required number
    return $rev;
}
 
// Driver code
$n = 11;
echo reverseBits($n);
 
// This code is contributed by mits
?>


Javascript




<script>
 
// JavaScript program  to
// reverse bits of a number
 
    // function to reverse bits of a number
    function reverseBits(n)
    {
        let rev = 0;
   
        // traversing bits of 'n'
        // from the right
        while (n > 0)
        {
            // bitwise left shift
            // 'rev' by 1
            rev <<= 1;
   
            // if current bit is '1'
            if ((n & 1) == 1)
                rev ^= 1;
   
            // bitwise right shift
            //'n' by 1
            n >>= 1;
        }
        // required number
        return rev;
    }
 
// Driver code
 
        let n = 11;
        document.write(reverseBits(n));
 
</script>


Output

13

Time Complexity: O(num), where num is the number of bits in the binary representation of n.
Space Complexity: O(1)
 

How about considering even the leading zero bits for the reversal?

Another twist to this problem is to reverse all 4 bytes of an integer value. For e.g. if the number is 11 (0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,1,1) then its reverse will be -805306368 (1,1,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0).

C++




#include <iostream>
#include <vector>
 
using namespace std;
 
// helper method to show actual bits
void showBits(int n) {
    vector<int> bits;
    for(int i = 0; i < sizeof(int) * 8; i++) {
        if((n & 1) > 0) bits.push_back(1);
        else bits.push_back(0);
        n = n >> 1;
    }
    for(int i = bits.size()-1; i >= 0; i--) {
        cout << bits[i] << ",";
    }
}
 
int reverseBits(int n) {
    int newN = 0;
    for(int i = 0; i < sizeof(int) * 8; i++) {
        newN = newN << 1;
        if((n & 1) > 0) {
            newN = newN ^ 1;
        }
        n = n >> 1;
    }
    return newN;
}
 
int main() {
    int num = 11;
    // just to show full bit sequence
    showBits(num);
    int ret = reverseBits(num);
    cout << "\nreverse of number " << num << " is=" << ret << endl;
    showBits(ret);
 
    cout << "\n";
 
    num = -10;
    // just to show full bit sequence
    showBits(num);
    ret = reverseBits(num);
    cout << "\nreverse of number " << num << " is=" << ret << endl;
    showBits(ret);
 
    return 0;
}
 
 
// This code is contributed by Shivhack999


Java




/*package whatever //do not write package name here */
 
import java.io.*;
import java.util.List;
import java.util.ArrayList;
 
class ReverseBits190 {
    public static void main (String[] args) {
          int num = 11;
        showBits(num); // just to show full bit sequence
          int ret = reverseBits(num);
        System.out.println("\nreverse of number " + num + " is=" + ret);
          showBits(ret);
 
          System.out.println("\n");
        num = -10;
        showBits(num); // just to show full bit sequence
          ret = reverseBits(num);
        System.out.println("\nreverse of number " + num + " is=" + ret);
          showBits(ret);
    }
 
      static int reverseBits(int n) {
        int newN = 0;
        for(int i = 0; i < Integer.SIZE; i++) {
            newN = newN << 1;
            if((n & 1) > 0) {
                newN = newN ^ 1;
            }
            n = n >> 1;
        }
        return newN;
    }
 
  // helper method to show actual bits
      static void showBits(int n) {
        List<Integer> l = new ArrayList<>();
        for(int i = 0; i< Integer.SIZE; i++) {
             
            if((n & 1) > 0) l.add(1);
            else l.add(0);
             
            n = n >> 1;
        }
        for(int i = l.size()-1; i >= 0; i--) {
            System.out.print(l.get(i) + ",");
        }
    }
}


C#




using System;
using System.Collections.Generic;
 
public class MainClass {
    public static void Main() {
        int num = 11;
        // just to show full bit sequence
        ShowBits(num);
        int ret = ReverseBits(num);
        Console.WriteLine("\nreverse of number " + num + " is=" + ret);
        ShowBits(ret);
 
        Console.WriteLine("\n");
 
        num = -10;
        // just to show full bit sequence
        ShowBits(num);
        ret = ReverseBits(num);
        Console.WriteLine("\nreverse of number " + num + " is=" + ret);
        ShowBits(ret);
    }
 
    // helper method to show actual bits
    public static void ShowBits(int n) {
        List<int> bits = new List<int>();
        for(int i = 0; i < sizeof(int) * 8; i++) {
            if((n & 1) > 0) bits.Add(1);
            else bits.Add(0);
            n = n >> 1;
        }
        for(int i = bits.Count-1; i >= 0; i--) {
            Console.Write(bits[i] + ",");
        }
    }
 
    public static int ReverseBits(int n) {
        int newN = 0;
        for(int i = 0; i < sizeof(int) * 8; i++) {
            newN = newN << 1;
            if((n & 1) > 0) {
                newN = newN ^ 1;
            }
            n = n >> 1;
        }
        return newN;
    }
}
 
// This code is contributed by shivregkec


Python3




def show_bits(n):
    bits = []
    for i in range(32):
        if n & 1:
            bits.append(1)
        else:
            bits.append(0)
        n >>= 1
    bits.reverse()
    print(bits)
 
def reverse_bits(n):
    new_n = 0
    for i in range(32):
        new_n <<= 1
        if n & 1:
            new_n ^= 1
        n >>= 1
    return new_n
 
num = 11
# just to show full bit sequence
show_bits(num)
ret = reverse_bits(num)
print("reverse of number", num, "is=", ret)
show_bits(ret)
 
print()
 
num = -10
# just to show full bit sequence
show_bits(num)
ret = reverse_bits(num)
print("reverse of number", num, "is=", ret)
show_bits(ret)


Javascript




// helper function to show actual bits
function showBits(n) {
let bits = [];
for (let i = 0; i < 32; i++) {
if (n & 1) {
bits.push(1);
} else {
bits.push(0);
}
n >>= 1;
}
bits.reverse();
console.log(bits);
}
 
function reverseBits(n) {
let newN = 0;
for (let i = 0; i < 32; i++) {
newN <<= 1;
if (n & 1) {
newN ^= 1;
}
n >>= 1;
}
return newN;
}
 
let num = 11;
// just to show full bit sequence
showBits(num);
let ret = reverseBits(num);
console.log('reverse of number ${num} is= ${ret}');
showBits(ret);
 
console.log();
 
num = -10;
// just to show full bit sequence
showBits(num);
ret = reverseBits(num);
console.log('reverse of number ${num} is= ${ret}');
showBits(ret);


Output

0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,1,1,
reverse of number 11 is=-805306368
1,1,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,

1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,0,1,1,0,
reverse of number -10 is=1879048191
0,1,1,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,

Contributed by Nikhil.

*************************************************************************************************************************

Another way using c++

Note: All 32bits are reversed, All leading 0’s are being considered using c++.

Examples :

Input : 4
Output : 536870912
Explanation:  (4)10 = (00000000000000000000000000000100)2
After reversing the binary form we get:
(00100000000000000000000000000000)2 = (536870912)10

Input : 7
Output : 3758096384
Explanation:
(7)10 = (00000000000000000000000000000111)2
After reversing the binary form we get:
(11100000000000000000000000000000)2 = (3758096384)10

Here first we will convert the number into binary form in a reverse way and every bit of binary number gets converted into decimal form and added to the previous one.

For input   (5)10  binary form is (00000000000000000000000000000101)2 

                 After reversing (10100000000000000000000000000000)2 

and its decimal form is (2684354560)10

The first bit of reversed binary form is 1 if we count from left to right, which means this bit is set, to find this bit we use the logic to convert a decimal numbers into binary.

Let k be a variable that stores this bit and “i = 0” be the variable of loop and increased by 1 in every iteration to find bits, and “j” be a variable that is used to convert it again in decimal whose initial value is 31 and decreased by 1 in every iteration  

k = (n>>i)&1 where i = 0  and j =31

k = (5>>0) & 1 = 1 since this bit is set then it takes part in converting in the decimal form again,  and it will be dn = dn + 2^31 where dn is new decimal form which is initially 0 and dn is added with all set bits

The second bit is  0.  

k = (n>>i)&1 where i = 1  and j =30

k = (5>>1) & 1 = 0   since this bit is not set then it does not  takes part in converting into decimal form

The third bit is 1

k = (n>>i)&1 where i = 2  and j =29

k = (5>>2)&1 = 1 since this bit is set then it takes part in converting in the decimal form again,  and it will be new decimal form then dn = dn + 2^29

The fourth bit is 0

k = (n>>i)&1 where i = 3  and j =28

k = (5>>3)&1 = 0   since this bit is not set then it does not takes part in converting in decimal form.

and so on…  for every set bit dn is updated until it founds all 32 bits and will be the required answer.

C++




#include <bits/stdc++.h>
using namespace std;
 
// function to reverse and convert in decimal
long long reversedBitsNum(long long n)
{
    long long dn = 0; // variable for new decimal number
    int j = 30; // initial value of j
    // loop to find the reversede binary bit
    for (int i = 0; i < 32; ++i) {
        int k = (n >> i) & 1; // k will be the required bit
        if (k) { // if bit is set then only convert in
                 // decimal
            if (j == -1) { // since if j = -1 then left
                           // shift operator will not work
                dn = abs(dn) + pow(2, 0);
            }
            else {
                dn = abs(dn)
                     + (2 << j); // here left shift operator
                                 // calculates 2 to power j
                                 // for making code efficient
            }
        }
        j--;  // j is decreased in each iteration
    }
  return abs(dn);
}
 
int main()
{
    long long n = 4;
    cout<<"Decimal number after reversing all 32 bits is : "<<reversedBitsNum(n);
    return 0;
}


Java




public class Main {
    // function to reverse and convert in decimal
    public static long reversedBitsNum(long n) {
        long dn = 0; // variable for new decimal number
        int j = 30; // initial value of j
        // loop to find the reversed binary bit
        for (int i = 0; i < 32; i++) {
            int k = (int)((n >> i) & 1); // k will be the required bit
            if (k != 0) { // if bit is set then only convert in decimal
                if (j == -1) { // since if j = -1 then left shift operator will not work
                    dn = Math.abs(dn) + (long)Math.pow(2, 0);
                } else {
                    dn = Math.abs(dn) + (2 << j); // here left shift operator calculates 2 to power j for making code efficient
                }
            }
            j--; // j is decreased in each iteration
        }
        return Math.abs(dn);
    }
 
    public static void main(String[] args) {
        long n = 4;
        System.out.println("Decimal number after reversing all 32 bits is : " + reversedBitsNum(n));
    }
}
 
// This code is contributed by shivhack999


Python3




# python code implementation for the above approach
 
# function to reverse and convert in decimal
 
 
def reversedBitsNum(n):
    dn = 0  # variable for new decimal number
    j = 30  # initial value of j
    # loop to find the reversed binary bit
    for i in range(32):
        k = (n >> i) & 1  # k will be the required bit
        if k != 0# if bit is set then only convert in
            # decimal
            if j == -1# since if j = -1 then left
                # shift operator will not work
                dn = abs(dn) + pow(2, 0)
 
            else:
                dn = abs(dn) + (2 << j)  # here left shift operator
                # calculates 2 to power j
                # for making code efficient
 
        j = j - 1  # j is decreased in each iteration
    return abs(dn)
 
 
n = 4
print("Decimal number after reversing all 32 bits is : ", reversedBitsNum(n))
 
# This code is contributed by Nidhi goel.


C#




using System;
 
public class GFG
{
   
  // function to reverse and convert in decimal
  public static long reversedBitsNum(long n)
  {
    long dn = 0; // variable for new decimal number
    int j = 30; // initial value of j
    // loop to find the reversed binary bit
    for (int i = 0; i < 32; ++i) {
      int k
        = (int)((n >> i)
                & 1); // k will be the required bit
      if (k != 0) { // if bit is set then only convert
        // in decimal
        if (j
            == -1) { // since if j = -1 then left
          // shift operator will not work
          dn = Math.Abs(dn)
            + (long)Math.Pow(2, 0);
        }
        else {
          dn = Math.Abs(dn)
            + (2
               << j); // here left shift
          // operator calculates 2
          // to power j for making
          // code efficient
        }
      }
      j--; // j is decreased in each iteration
    }
    return Math.Abs(dn);
  }
 
  static public void Main()
  {
    long n = 4;
    Console.WriteLine(
      "Decimal number after reversing all 32 bits is : "
      + reversedBitsNum(n));
  }
}
 
// This code is contributed by akashish__


Javascript




// function to reverse and convert in decimal
function reversedBitsNum(n) {
  let dn = 0; // variable for new decimal number
  let j = 30; // initial value of j
  // loop to find the reversede binary bit
  for (let i = 0; i < 32; ++i) {
    let k = (n >> i) & 1; // k will be the required bit
    if (k) { // if bit is set then only convert in
      // decimal
      if (j == -1) { // since if j = -1 then left
        // shift operator will not work
        dn = Math.abs(dn) + Math.pow(2, 0);
      } else {
        dn = Math.abs(dn) + (2 << j); // here left shift operator
        // calculates 2 to power j
        // for making code efficient
      }
    }
    j--; // j is decreased in each iteration
  }
  return Math.abs(dn);
}
 
let n = 4;
console.log(
  "Decimal number after reversing all 32 bits is : " + reversedBitsNum(n)
);
 
// This code is contributed by akashish__


Output

Decimal number after reversing all 32 bits is : 536870912

In the above program, we use abs(dn) everywhere because when it calculates 2^31 since there can be only 32 bits it gives the negative value of the same magnitude, to correct this we return the absolute value of dn.

Contributed by Shivam Verma(coder_shiv)

Feeling lost in the world of random DSA topics, wasting time without progress? It’s time for a change! Join our DSA course, where we’ll guide you on an exciting journey to master DSA efficiently and on schedule.
Ready to dive in? Explore our Free Demo Content and join our DSA course, trusted by over 100,000 neveropen!

RELATED ARTICLES

Most Popular

Recent Comments