Given a quadratic equation in the form ax2 + bx + c, (Only the values of a, b and c are provided) the task is to find the roots of the equation.
Examples:
Input: a = 1, b = -2, c = 1
Output: Roots are real and same 1Input : a = 1, b = 7, c = 12
Output: Roots are real and different
-3, -4Input : a = 1, b = 1, c = 1
Output : Roots are complex
-0.5 + i1.73205, -0.5 – i1.73205
Roots of Quadratic Equation using Sridharacharya Formula:
The roots could be found using the below formula (It is known as the formula of Sridharacharya)
The values of the roots depends on the term (b2 – 4ac) which is known as the discriminant (D).
If D > 0:
=> This occurs when b2 > 4ac.
=> The roots are real and unequal.
=> The roots are {-b + √(b2 – 4ac)}/2a and {-b – √(b2 – 4ac)}/2a.If D = 0:
=> This occurs when b2 = 4ac.
=> The roots are real and equal.
=> The roots are (-b/2a).If D < 0:
=> This occurs when b2 < 4ac.
=> The roots are imaginary and unequal.
=> The discriminant can be written as (-1 * -D).
=> As D is negative, -D will be positive.
=> The roots are {-b ± √(-1*-D)} / 2a = {-b ± i√(-D)} / 2a = {-b ± i√-(b2 – 4ac)}/2a where i = √-1.
Use the following pseudo algorithm to find the roots of the
Pseudo algorithm:
Start
Read the values of a, b, c
Compute d = b2 – 4ac
If d > 0
calculate root1 = {-b + √(b2 – 4ac)}/2a
calculate root2 = {-b – √(b2 – 4ac)}/2a
else If d = 0
calculate root1 = root2 = (-b/2a)
else
calculate root1 = {-b + i√-(b2 – 4ac)}/2a
calculate root2 = {-b + i√-(b2 – 4ac)}/2a
print root1 and root2
End
Below is the implementation of the above formula.
C++
// C++ program to find roots of a quadratic equation #include <bits/stdc++.h> using namespace std; // Prints roots of quadratic equation ax*2 + bx + x void findRoots( int a, int b, int c) { // If a is 0, then equation is not quadratic, but // linear if (a == 0) { cout << "Invalid" ; return ; } int d = b * b - 4 * a * c; double sqrt_val = sqrt ( abs (d)); if (d > 0) { cout << "Roots are real and different \n" ; cout << ( double )(-b + sqrt_val) / (2 * a) << "\n" << ( double )(-b - sqrt_val) / (2 * a); } else if (d == 0) { cout << "Roots are real and same \n" ; cout << -( double )b / (2 * a); } else // d < 0 { cout << "Roots are complex \n" ; cout << -( double )b / (2 * a) << " + i" << sqrt_val / (2 * a) << "\n" << -( double )b / (2 * a) << " - i" << sqrt_val / (2 * a); } } // Driver code int main() { int a = 1, b = -7, c = 12; // Function call findRoots(a, b, c); return 0; } |
C
// C program to find roots of a quadratic equation #include <math.h> #include <stdio.h> #include <stdlib.h> // Prints roots of quadratic equation ax*2 + bx + x void findRoots( int a, int b, int c) { // If a is 0, then equation is not quadratic, but // linear if (a == 0) { printf ( "Invalid" ); return ; } int d = b * b - 4 * a * c; double sqrt_val = sqrt ( abs (d)); if (d > 0) { printf ( "Roots are real and different \n" ); printf ( "%f\n%f" , ( double )(-b + sqrt_val) / (2 * a), ( double )(-b - sqrt_val) / (2 * a)); } else if (d == 0) { printf ( "Roots are real and same \n" ); printf ( "%f" , -( double )b / (2 * a)); } else // d < 0 { printf ( "Roots are complex \n" ); printf ( "%f + i%f\n%f - i%f" , -( double )b / (2 * a), sqrt_val / (2 * a), -( double )b / (2 * a), sqrt_val / (2 * a)); } } // Driver code int main() { int a = 1, b = -7, c = 12; // Function call findRoots(a, b, c); return 0; } |
Java
// Java program to find roots // of a quadratic equation import static java.lang.Math.*; import java.io.*; class Quadratic { // Prints roots of quadratic // equation ax * 2 + bx + x static void findRoots( int a, int b, int c) { // If a is 0, then equation is not // quadratic, but linear if (a == 0 ) { System.out.println( "Invalid" ); return ; } int d = b * b - 4 * a * c; double sqrt_val = sqrt(abs(d)); if (d > 0 ) { System.out.println( "Roots are real and different \n" ); System.out.println( ( double )(-b + sqrt_val) / ( 2 * a) + "\n" + ( double )(-b - sqrt_val) / ( 2 * a)); } else if (d == 0 ) { System.out.println( "Roots are real and same \n" ); System.out.println(-( double )b / ( 2 * a) + "\n" + -( double )b / ( 2 * a)); } else // d < 0 { System.out.println( "Roots are complex \n" ); System.out.println(-( double )b / ( 2 * a) + " + i" + sqrt_val / ( 2 * a) + "\n" + -( double )b / ( 2 * a) + " - i" + sqrt_val / ( 2 * a)); } } // Driver code public static void main(String args[]) { int a = 1 , b = - 7 , c = 12 ; // Function call findRoots(a, b, c); } } // This code is contributed by Sumit Kumar. |
Python3
# Python program to find roots # of a quadratic equation import math # Prints roots of quadratic equation # ax*2 + bx + x def findRoots(a, b, c): # If a is 0, then equation is # not quadratic, but linear if a = = 0 : print ( "Invalid" ) return - 1 d = b * b - 4 * a * c sqrt_val = math.sqrt( abs (d)) if d > 0 : print ( "Roots are real and different " ) print (( - b + sqrt_val) / ( 2 * a)) print (( - b - sqrt_val) / ( 2 * a)) elif d = = 0 : print ( "Roots are real and same" ) print ( - b / ( 2 * a)) else : # d<0 print ( "Roots are complex" ) print ( - b / ( 2 * a), " + i" , sqrt_val / ( 2 * a)) print ( - b / ( 2 * a), " - i" , sqrt_val / ( 2 * a)) # Driver Program if __name__ = = '__main__' : a = 1 b = - 7 c = 12 # Function call findRoots(a, b, c) # This code is contributed by Sharad Bhardwaj. |
C#
// C# program to find roots // of a quadratic equation using System; class Quadratic { // Prints roots of quadratic // equation ax * 2 + bx + x void findRoots( int a, int b, int c) { // If a is 0, then equation is // not quadratic, but linear if (a == 0) { Console.Write( "Invalid" ); return ; } int d = b * b - 4 * a * c; double sqrt_val = Math.Abs(d); if (d > 0) { Console.Write( "Roots are real and different \n" ); Console.Write( ( double )(-b + sqrt_val) / (2 * a) + "\n" + ( double )(-b - sqrt_val) / (2 * a)); } // d < 0 else { Console.Write( "Roots are complex \n" ); Console.Write(-( double )b / (2 * a) + " + i" + sqrt_val / (2 * a) + "\n" + -( double )b / (2 * a) + " - i" + sqrt_val / (2 * a)); } } // Driver code public static void Main() { Quadratic obj = new Quadratic(); int a = 1, b = -7, c = 12; // Function call obj.findRoots(a, b, c); } } // This code is contributed by nitin mittal. |
PHP
<?php // PHP program to find roots // of a quadratic equation // Prints roots of quadratic // equation ax*2 + bx + x function findRoots( $a , $b , $c ) { // If a is 0, then equation is // not quadratic, but linear if ( $a == 0) { echo "Invalid" ; return ; } $d = $b * $b - 4 * $a * $c ; $sqrt_val = sqrt( abs ( $d )); if ( $d > 0) { echo "Roots are real and " . "different \n" ; echo (- $b + $sqrt_val ) / (2 * $a ) , "\n" , (- $b - $sqrt_val ) / (2 * $a ); } else if ( $d == 0) { echo "Roots are real and same \n" ; echo - $b / (2 * $a ); } // d < 0 else { echo "Roots are complex \n" ; echo - $b / (2 * $a ) , " + i" , $sqrt_val / (2 * $a ) , "\n" , - $b / (2 * $a ), " - i" , $sqrt_val / (2 * $a ) ; } } // Driver code $a = 1; $b = -7 ; $c = 12; // Function call findRoots( $a , $b , $c ); // This code is contributed // by nitin mittal. ?> |
Javascript
<script> // JavaScript program to find roots // of a quadratic equation // Prints roots of quadratic // equation ax * 2 + bx + x function findRoots(a, b, c) { // If a is 0, then equation is not // quadratic, but linear if (a == 0) { document.write( "Invalid" ); return ; } let d = b * b - 4 * a * c; let sqrt_val = Math.sqrt(Math.abs(d)); if (d > 0) { document.write( "Roots are real and different \n" + "<br/>" ); document.write( (-b + sqrt_val) / (2 * a) + "<br/>" + (-b - sqrt_val) / (2 * a)); } else if (d == 0) { document.write( "Roots are real and same \n" + "<br/>" ); document.write(-b / (2 * a) + "<br/>" + -b / (2 * a)) ; } else // d < 0 { document.write( "Roots are complex \n" ); document.write(-b / (2 * a) + " + i" + sqrt_val / (2 * a) + "<br/>" + -b / (2 * a) + " - i" + sqrt_val) / (2 * a) ; } } // Driver Code let a = 1, b = -7, c = 12; // Function call findRoots(a, b, c); </script> |
Roots are real and different 4.000000 3.000000
Time Complexity: O(log(D)), where D is the discriminant of the given quadratic equation.
Auxiliary Space: O(1)
Using Formula in python:
Approach:
- Import the math module for square root and other mathematical operations.
- Declare the coefficients a, b, and c of the quadratic equation.
- Calculate the discriminant discriminant using the formula b^2 – 4ac.
- Check if the discriminant is greater than zero, zero, or less than zero.
- If the discriminant is greater than zero, calculate two real and distinct roots using the formula (-b + sqrt(discriminant)) / (2*a) and (-b – sqrt(discriminant)) / (2*a), and print the roots with the message “Roots are real and distinct”.
- If the discriminant is equal to zero, calculate one real and same root using the formula -b / (2*a), and print the root with the message “Roots are real and same”.
- If the discriminant is less than zero, calculate two complex and different roots using the formula (-b / 2*a) +/- (sqrt(-discriminant) / (2*a)), and print the roots with the message “Roots are complex and different”.
Python3
import math a = 1 b = - 2 c = 1 # Calculate the discriminant discriminant = b * * 2 - 4 * a * c if discriminant > 0 : root1 = ( - b + math.sqrt(discriminant)) / ( 2 * a) root2 = ( - b - math.sqrt(discriminant)) / ( 2 * a) print ( "Roots are real and distinct" ) print ( "Root 1:" , root1) print ( "Root 2:" , root2) elif discriminant = = 0 : root = - b / ( 2 * a) print ( "Roots are real and same" ) print ( "Root:" , root) else : realPart = - b / ( 2 * a) imaginaryPart = math.sqrt( - discriminant) / ( 2 * a) print ( "Roots are complex and different" ) print ( "Root 1:" , realPart, "+" , imaginaryPart, "i" ) print ( "Root 2:" , realPart, "-" , imaginaryPart, "i" ) |
Roots are real and same Root: 1.0
Time Complexity: O(1)
Space Complexity: O(1)
This article is contributed by Dheeraj Gupta. Please write comments if you find anything incorrect, or have more information about the topic discussed above.
Ready to dive in? Explore our Free Demo Content and join our DSA course, trusted by over 100,000 neveropen!