Saturday, December 28, 2024
Google search engine
HomeData Modelling & AIEvaluation of Expression Tree

Evaluation of Expression Tree

Given a simple expression tree, consisting of basic binary operators i.e., + , – ,* and / and some integers, evaluate the expression tree.

Examples:

Input: Root node of the below tree

pic2

Output:100

Input: Root node of the below tree

pic1

Output: 110

Recommended Practice

Approach: The approach to solve this problem is based on following observation:

As all the operators in the tree are binary, hence each node will have either 0 or 2 children. As it can be inferred from the examples above, all the integer values would appear at the leaf nodes, while the interior nodes represent the operators.

Therefore we can do inorder traversal of the binary tree and evaluate the expression as we move ahead.

To evaluate the syntax tree, a recursive approach can be followed.

Algorithm:

  • Let t be the syntax tree
  • If  t is not null then      
    • If t.info is operand then  
      • Return  t.info
    • Else
      • A = solve(t.left)
      • B = solve(t.right)
      • return A operator B, where operator is the info contained in t

Below is the implementation of the above approach:

C++




// C++ program to evaluate an expression tree
#include <bits/stdc++.h>
using namespace std;
 
// Class to represent the nodes of syntax tree
class node
{
public:
    string info;
    node *left = NULL, *right = NULL;
    node(string x)
    {
        info = x;
    }
};
 
// Utility function to return the integer value
// of a given string
int toInt(string s)
{
    int num = 0;
         
    // Check if the integral value is
    // negative or not
    // If it is not negative, generate the number
    // normally
    if(s[0]!='-')
        for (int i=0; i<s.length(); i++)
            num = num*10 + (int(s[i])-48);
    // If it is negative, calculate the +ve number
    // first ignoring the sign and invert the
    // sign at the end
    else
    {
      for (int i=1; i<s.length(); i++)
        num = num*10 + (int(s[i])-48);
      num = num*-1;
    }
     
    return num;
}
 
// This function receives a node of the syntax tree
// and recursively evaluates it
int eval(node* root)
{
    // empty tree
    if (!root)
        return 0;
 
    // leaf node i.e, an integer
    if (!root->left && !root->right)
        return toInt(root->info);
 
    // Evaluate left subtree
    int l_val = eval(root->left);
 
    // Evaluate right subtree
    int r_val = eval(root->right);
 
    // Check which operator to apply
    if (root->info=="+")
        return l_val+r_val;
 
    if (root->info=="-")
        return l_val-r_val;
 
    if (root->info=="*")
        return l_val*r_val;
 
    return l_val/r_val;
}
 
//driver function to check the above program
int main()
{
    // create a syntax tree
    node *root = new node("+");
    root->left = new node("*");
    root->left->left = new node("5");
    root->left->right = new node("-4");
    root->right = new node("-");
    root->right->left = new node("100");
    root->right->right = new node("20");
    cout << eval(root) << endl;
 
    delete(root);
 
    root = new node("+");
    root->left = new node("*");
    root->left->left = new node("5");
    root->left->right = new node("4");
    root->right = new node("-");
    root->right->left = new node("100");
    root->right->right = new node("/");
    root->right->right->left = new node("20");
    root->right->right->right = new node("2");
 
    cout << eval(root);
    return 0;
}


Java




// Java program to evaluate expression tree
import java.lang.*;
 
class GFG{
     
Node root;
 
// Class to represent the nodes of syntax tree
public static class Node
{
    String data;
    Node left, right;
 
    Node(String d)
    {
        data = d;
        left = null;
        right = null;
    }
}
 
private static int toInt(String s)
{
    int num = 0;
 
    // Check if the integral value is
    // negative or not
    // If it is not negative, generate
    // the number normally
    if (s.charAt(0) != '-')
        for(int i = 0; i < s.length(); i++)
            num = num * 10 + ((int)s.charAt(i) - 48);
             
    // If it is negative, calculate the +ve number
    // first ignoring the sign and invert the
    // sign at the end
    else
    {
        for(int i = 1; i < s.length(); i++)
          num = num * 10 + ((int)(s.charAt(i)) - 48);
        num = num * -1;
    }
    return num;
}
 
// This function receives a node of the syntax
// tree and recursively evaluate it
public static int evalTree(Node root)
{
     
    // Empty tree
    if (root == null)
        return 0;
 
    // Leaf node i.e, an integer
    if (root.left == null && root.right == null)
        return toInt(root.data);
 
    // Evaluate left subtree
    int leftEval = evalTree(root.left);
 
    // Evaluate right subtree
    int rightEval = evalTree(root.right);
 
    // Check which operator to apply
    if (root.data.equals("+"))
        return leftEval + rightEval;
 
    if (root.data.equals("-"))
        return leftEval - rightEval;
 
    if (root.data.equals("*"))
        return leftEval * rightEval;
 
    return leftEval / rightEval;
}
 
// Driver code
public static void main(String[] args)
{
     
    // Creating a sample tree
    Node root = new Node("+");
    root.left = new Node("*");
    root.left.left = new Node("5");
    root.left.right = new Node("-4");
    root.right = new Node("-");
    root.right.left = new Node("100");
    root.right.right = new Node("20");
    System.out.println(evalTree(root));
 
    root = null;
 
    // Creating a sample tree
    root = new Node("+");
    root.left = new Node("*");
    root.left.left = new Node("5");
    root.left.right = new Node("4");
    root.right = new Node("-");
    root.right.left = new Node("100");
    root.right.right = new Node("/");
    root.right.right.left = new Node("20");
    root.right.right.right = new Node("2");
    System.out.println(evalTree(root));
}
}
 
// This code is contributed by Ankit Gupta


Python3




# Python program to evaluate expression tree
 
# Class to represent the nodes of syntax tree
 
 
class node:
    def __init__(self, value):
        self.left = None
        self.data = value
        self.right = None
 
# This function receives a node of the syntax tree
# and recursively evaluate it
 
 
def evaluateExpressionTree(root):
 
    # empty tree
    if root is None:
        return 0
 
    # leaf node
    if root.left is None and root.right is None:
        return int(root.data)
 
    # evaluate left tree
    left_sum = evaluateExpressionTree(root.left)
 
    # evaluate right tree
    right_sum = evaluateExpressionTree(root.right)
 
    # check which operation to apply
    if root.data == '+':
        return left_sum + right_sum
 
    elif root.data == '-':
        return left_sum - right_sum
 
    elif root.data == '*':
        return left_sum * right_sum
 
    else:
        return left_sum // right_sum
 
 
# Driver function to test above problem
if __name__ == '__main__':
 
    # creating a sample tree
    root = node('+')
    root.left = node('*')
    root.left.left = node('5')
    root.left.right = node('-4')
    root.right = node('-')
    root.right.left = node('100')
    root.right.right = node('20')
    print (evaluateExpressionTree(root))
 
    root = None
 
    # creating a sample tree
    root = node('+')
    root.left = node('*')
    root.left.left = node('5')
    root.left.right = node('4')
    root.right = node('-')
    root.right.left = node('100')
    root.right.right = node('/')
    root.right.right.left = node('20')
    root.right.right.right = node('2')
    print (evaluateExpressionTree(root))
 
# This code is contributed by Harshit Sidhwa


C#




// C# program to evaluate expression tree
using System;
 
public class GFG
{
 
    // Class to represent the nodes of syntax tree
    public class Node {
        public
       String data;
              public
       Node left, right;
 
        public Node(String d) {
            data = d;
            left = null;
            right = null;
        }
    }
 
    private static int toInt(String s) {
        int num = 0;
 
        // Check if the integral value is
        // negative or not
        // If it is not negative, generate
        // the number normally
        if (s[0] != '-')
            for (int i = 0; i < s.Length; i++)
                num = num * 10 + ((int) s[i] - 48);
 
        // If it is negative, calculate the +ve number
        // first ignoring the sign and invert the
        // sign at the end
        else {
          for (int i = 1; i < s.Length; i++)
            num = num * 10 + ((int) (s[i]) - 48);
          num = num * -1;
        }
        return num;
    }
 
    // This function receives a node of the syntax
    // tree and recursively evaluate it
    public static int evalTree(Node root) {
 
        // Empty tree
        if (root == null)
            return 0;
 
        // Leaf node i.e, an integer
        if (root.left == null && root.right == null)
            return toInt(root.data);
 
        // Evaluate left subtree
        int leftEval = evalTree(root.left);
 
        // Evaluate right subtree
        int rightEval = evalTree(root.right);
 
        // Check which operator to apply
        if (root.data.Equals("+"))
            return leftEval + rightEval;
 
        if (root.data.Equals("-"))
            return leftEval - rightEval;
 
        if (root.data.Equals("*"))
            return leftEval * rightEval;
 
        return leftEval / rightEval;
    }
 
    // Driver code
    public static void Main(String[] args) {
 
        // Creating a sample tree
        Node root = new Node("+");
        root.left = new Node("*");
        root.left.left = new Node("5");
        root.left.right = new Node("-4");
        root.right = new Node("-");
        root.right.left = new Node("100");
        root.right.right = new Node("20");
        Console.WriteLine(evalTree(root));
 
        root = null;
 
        // Creating a sample tree
        root = new Node("+");
        root.left = new Node("*");
        root.left.left = new Node("5");
        root.left.right = new Node("4");
        root.right = new Node("-");
        root.right.left = new Node("100");
        root.right.right = new Node("/");
        root.right.right.left = new Node("20");
        root.right.right.right = new Node("2");
        Console.WriteLine(evalTree(root));
    }
}
 
// This code is contributed by umadevi9616


Javascript




<script>
// javascript program to evaluate expression tree
    var root;
 
    // Class to represent the nodes of syntax tree
     class Node {
        constructor(val) {
            this.data = val;
            this.left = null;
            this.right = null;
        }
    }
 
     function toInt( s) {
        var num = 0;
  
        // Check if the integral value is
        // negative or not
        // If it is not negative, generate
        // the number normally
        if (s.charAt(0) != '-')
            for (i = 0; i < s.length; i++)
                num = num * 10 + ( s.charCodeAt(i) - 48);
 
        // If it is negative, calculate the +ve number
        // first ignoring the sign and invert the
        // sign at the end
        else {
          for (i = 1; i < s.length; i++)
              num = num * 10 + (s.charCodeAt(i) - 48);
          num = num * -1;
        }
        return num;
    }
 
    // This function receives a node of the syntax
    // tree and recursively evaluate it
    function evalTree(root) {
 
        // Empty tree
        if (root == null)
            return 0;
 
        // Leaf node i.e, an integer
        if (root.left == null && root.right == null)
            return toInt(root.data);
 
        // Evaluate left subtree
        var leftEval = evalTree(root.left);
 
        // Evaluate right subtree
        var rightEval = evalTree(root.right);
 
        // Check which operator to apply
        if (root.data === ("+"))
            return leftEval + rightEval;
 
        if (root.data === ("-"))
            return leftEval - rightEval;
 
        if (root.data === ("*"))
            return leftEval * rightEval;
 
        return leftEval / rightEval;
    }
 
    // Driver code
     
 
        // Creating a sample tree
        var root = new Node("+");
        root.left = new Node("*");
        root.left.left = new Node("5");
        root.left.right = new Node("-4");
        root.right = new Node("-");
        root.right.left = new Node("100");
        root.right.right = new Node("20");
        document.write(evalTree(root));
 
        root = null;
 
        // Creating a sample tree
        root = new Node("+");
        root.left = new Node("*");
        root.left.left = new Node("5");
        root.left.right = new Node("4");
        root.right = new Node("-");
        root.right.left = new Node("100");
        root.right.right = new Node("/");
        root.right.right.left = new Node("20");
        root.right.right.right = new Node("2");
        document.write("<br/>"+evalTree(root));
 
// This code is contributed by gauravrajput1
</script>


Output

60
110

Time Complexity: O(n), as each node is visited once.
Auxiliary Space: O(n)

This article is contributed by Ashutosh Kumar. If you like neveropen and would like to contribute, you can also write an article using write.geeksforgeeks.org or mail your article to review-team@geeksforgeeks.org. See your article appearing on the neveropen main page and help other Geeks.

Feeling lost in the world of random DSA topics, wasting time without progress? It’s time for a change! Join our DSA course, where we’ll guide you on an exciting journey to master DSA efficiently and on schedule.
Ready to dive in? Explore our Free Demo Content and join our DSA course, trusted by over 100,000 neveropen!

RELATED ARTICLES

Most Popular

Recent Comments