Find the n’th term in Look-and-say (Or Count and Say) Sequence. The look-and-say sequence is the sequence of the below integers:
1, 11, 21, 1211, 111221, 312211, 13112221, 1113213211, …
How is the above sequence generated?
n’th term is generated by reading (n-1)’th term.
The first term is "1"
Second term is "11", generated by reading first term as "One 1"
(There is one 1 in previous term)
Third term is "21", generated by reading second term as "Two 1"
Fourth term is "1211", generated by reading third term as "One 2 One 1"
and so on
How to find n’th term?
Example:
Input: n = 3
Output: 21
Input: n = 5
Output: 111221
The idea is simple, we generate all terms from 1 to n. First, two terms are initialized as “1” and “11”, and all other terms are generated using previous terms. To generate a term using the previous term, we scan the previous term. While scanning a term, we simply keep track of the count of all consecutive characters. For a sequence of the same characters, we append the count followed by the character to generate the next term.
Below is an implementation of the above idea.
C++
// C++ program to find n'th term in look and say // sequence #include <bits/stdc++.h> using namespace std; // Returns n'th term in look-and-say sequence string countnndSay( int n) { // Base cases if (n == 1) return "1" ; if (n == 2) return "11" ; // Find n'th term by generating all terms from 3 to // n-1. Every term is generated using previous term string str = "11" ; // Initialize previous term for ( int i = 3; i<=n; i++) { // In below for loop, previous character // is processed in current iteration. That // is why a dummy character is added to make // sure that loop runs one extra iteration. str += '$' ; int len = str.length(); int cnt = 1; // Initialize count of matching chars string tmp = "" ; // Initialize i'th term in series // Process previous term to find the next term for ( int j = 1; j < len; j++) { // If current character doesn't match if (str[j] != str[j-1]) { // Append count of str[j-1] to temp tmp += cnt + '0' ; // Append str[j-1] tmp += str[j-1]; // Reset count cnt = 1; } // If matches, then increment count of matching // characters else cnt++; } // Update str str = tmp; } return str; } // Driver program int main() { int N = 3; cout << countnndSay(N) << endl; return 0; } |
Java
// Java program to find n'th // term in look and say sequence class GFG { // Returns n'th term in // look-and-say sequence static String countnndSay( int n) { // Base cases if (n == 1 ) return "1" ; if (n == 2 ) return "11" ; // Find n'th term by generating // all terms from 3 to n-1. // Every term is generated // using previous term // Initialize previous term String str = "11" ; for ( int i = 3 ; i <= n; i++) { // In below for loop, previous // character is processed in // current iteration. That is // why a dummy character is // added to make sure that loop // runs one extra iteration. str += '$' ; int len = str.length(); int cnt = 1 ; // Initialize count // of matching chars String tmp = "" ; // Initialize i'th // term in series char []arr = str.toCharArray(); // Process previous term // to find the next term for ( int j = 1 ; j < len; j++) { // If current character // doesn't match if (arr[j] != arr[j - 1 ]) { // Append count of // str[j-1] to temp tmp += cnt + 0 ; // Append str[j-1] tmp += arr[j - 1 ]; // Reset count cnt = 1 ; } // If matches, then increment // count of matching characters else cnt++; } // Update str str = tmp; } return str; } // Driver Code public static void main(String[] args) { int N = 3 ; System.out.println(countnndSay(N)); } } // This code is contributed // by ChitraNayal |
Python3
# Python 3 program to find # n'th term in look and # say sequence # Returns n'th term in # look-and-say sequence def countnndSay(n): # Base cases if (n = = 1 ): return "1" if (n = = 2 ): return "11" # Find n'th term by generating # all terms from 3 to n-1. # Every term is generated using # previous term # Initialize previous term s = "11" for i in range ( 3 , n + 1 ): # In below for loop, # previous character is # processed in current # iteration. That is why # a dummy character is # added to make sure that # loop runs one extra iteration. s + = '$' l = len (s) cnt = 1 # Initialize count # of matching chars tmp = "" # Initialize i'th # term in series # Process previous term to # find the next term for j in range ( 1 , l): # If current character # doesn't match if (s[j] ! = s[j - 1 ]): # Append count of # str[j-1] to temp tmp + = str (cnt + 0 ) # Append str[j-1] tmp + = s[j - 1 ] # Reset count cnt = 1 # If matches, then increment # count of matching characters else : cnt + = 1 # Update str s = tmp return s; # Driver Code N = 3 print (countnndSay(N)) # This code is contributed # by ChitraNayal |
C#
// C# program to find n'th // term in look and say sequence using System; class GFG { // Returns n'th term in // look-and-say sequence static string countnndSay( int n) { // Base cases if (n == 1) return "1" ; if (n == 2) return "11" ; // Find n'th term by generating // all terms from 3 to n-1. // Every term is generated using // previous term // Initialize previous term string str = "11" ; for ( int i = 3; i <= n; i++) { // In below for loop, previous // character is processed in // current iteration. That is // why a dummy character is // added to make sure that loop // runs one extra iteration. str += '$' ; int len = str.Length; int cnt = 1; // Initialize count of // matching chars string tmp = "" ; // Initialize i'th // term in series char []arr = str.ToCharArray(); // Process previous term // to find the next term for ( int j = 1; j < len; j++) { // If current character // doesn't match if (arr[j] != arr[j - 1]) { // Append count of // str[j-1] to temp tmp += cnt + 0; // Append str[j-1] tmp += arr[j - 1]; // Reset count cnt = 1; } // If matches, then increment // count of matching characters else cnt++; } // Update str str = tmp; } return str; } // Driver Code public static void Main() { int N = 3; Console.Write(countnndSay(N)); } } // This code is contributed // by ChitraNayal |
Javascript
<script> // Javascript program to find n'th // term in look and say sequence // Returns n'th term in // look-and-say sequence function countnndSay(n) { // Base cases if (n == 1) return "1" ; if (n == 2) return "11" ; // Find n'th term by generating // all terms from 3 to n-1. // Every term is generated // using previous term // Initialize previous term let str = "11" ; for (let i = 3; i <= n; i++) { // In below for loop, previous // character is processed in // current iteration. That is // why a dummy character is // added to make sure that loop // runs one extra iteration. str += '$ '; let len = str.length; // Initialize count // of matching chars let cnt = 1; // Initialize i' th // term in series let tmp = "" ; let arr = str.split( "" ); // Process previous term // to find the next term for (let j = 1; j < len; j++) { // If current character // doesn't match if (arr[j] != arr[j - 1]) { // Append count of // str[j-1] to temp tmp += cnt + 0; // Append str[j-1] tmp += arr[j - 1]; // Reset count cnt = 1; } // If matches, then increment // count of matching characters else cnt++; } // Update str str = tmp; } return str; } // Driver Code let N = 3; document.write(countnndSay(N)); // This code is contributed by avanitrachhadiya2155 </script> |
PHP
<?php // PHP program to find // n'th term in look // and say sequence // Returns n'th term in // look-and-say sequence function countnndSay( $n ) { // Base cases if ( $n == 1) return "1" ; if ( $n == 2) return "11" ; // Find n'th term by generating // all terms from 3 to n-1. // Every term is generated // using previous term // Initialize previous term $str = "11" ; for ( $i = 3; $i <= $n ; $i ++) { // In below for loop, // previous character is // processed in current // iteration. That is why // a dummy character is // added to make sure that // loop runs one extra iteration. $str = $str . '$' ; $len = strlen ( $str ); $cnt = 1; // Initialize count of // matching chars $tmp = "" ; // Initialize i'th // term in series // Process previous term // to find the next term for ( $j = 1; $j < $len ; $j ++) { // If current character // doesn't match if ( $str [ $j ] != $str [ $j - 1]) { // Append count of // str[j-1] to temp $tmp = $tmp . $cnt + 0; // Append str[j-1] $tmp = $tmp . $str [ $j - 1]; // Reset count $cnt = 1; } // If matches, then increment // count of matching characters else $cnt ++; } // Update str $str = $tmp ; } return $str ; } // Driver Code $N = 3; echo countnndSay( $N ); return 0; // This code is contributed // by ChitraNayal ?> |
21
Time Complexity : O(n2)
Auxiliary Space : O(1)
Another Approach(Using STL): There is one more idea where we can use unordered_map from c++ stl to track the count of digits. Basic idea is to use a generator function that will generate a string from the previous string. In the count and say function we will iterate over integers from 1 to n-1 and keep updating our result.
C++
#include <bits/stdc++.h> using namespace std; // generator function returns int string from prev int // string e.g. -> it will return '1211' for '21' ( One 2's // and One 1) string generator(string str) { string ans = "" ; unordered_map< char , int > tempCount; // It is used to count integer sequence for ( int i = 0; i < str.length() + 1; i++) { // when current char is different from prev one we // clear the map and update the ans if (tempCount.find(str[i]) == tempCount.end() && i > 0) { auto prev = tempCount.find(str[i - 1]); ans += to_string(prev->second) + prev->first; tempCount.clear(); } // when current char is same as prev one we increase // it's count value tempCount[str[i]]++; } return ans; } string countnndSay( int n) { string res = "1" ; // res variable keep tracks of string // from 1 to n-1 // For loop iterates for n-1 time and generate strings // in sequence "1" -> "11" -> "21" -> "1211" for ( int i = 1; i < n; i++) { res = generator(res); } return res; } int main() { int N = 3; cout << countnndSay(N) << endl; return 0; } |
Java
import java.io.*; import java.util.*; class GFG { // generator function returns int string from prev int // string e.g. -> it will return '1211' for '21' ( One 2's // and One 1) static String generator(String str) { String ans = "" ; HashMap<Character, Integer>tempCount = new HashMap<>(); // It is used to count integer sequence for ( int i = 0 ; i < str.length() + 1 ; i++) { // when current char is different from prev one we // clear the map and update the ans if (i == str.length() || tempCount.containsKey(str.charAt(i)) == false && i > 0 ) { ans += String.valueOf(tempCount.get(str.charAt(i- 1 ))) + str.charAt(i- 1 ); tempCount.clear(); } // when current char is same as prev one we increase // it's count value if (i == str.length()){ tempCount.put( null , 1 ); } else { if (tempCount.containsKey(str.charAt(i))){ tempCount.put(str.charAt(i), tempCount.get(str.charAt(i))+ 1 ); } else { if (i != str.length())tempCount.put(str.charAt(i), 1 ); } } } return ans; } static String countnndSay( int n) { String res = "1" ; // res variable keep tracks of string // from 1 to n-1 // For loop iterates for n-1 time and generate strings // in sequence "1" -> "11" -> "21" -> "1211" for ( int i = 1 ; i < n; i++) { res = generator(res); } return res; } // Driver Code public static void main(String args[]) { int N = 3 ; System.out.println(countnndSay(N)); } } // This code is contributed by shinjanpatra |
Python3
def generator(s): # variable to store the result string ans = "" # use a dictionary to count the integer sequence tempCount = {} # loop through the input string for i in range ( len (s) + 1 ): # when the current character is different from the previous one # or the end of the input string has been reached # update the result string and clear the dictionary if i = = len (s) or s[i] not in tempCount and i > 0 : ans + = str (tempCount[s[i - 1 ]]) + s[i - 1 ] tempCount.clear() # when the end of the input string has been reached if i = = len (s): tempCount[ None ] = 1 else : # when the current character is the same as the previous one # increase its count value if s[i] in tempCount: tempCount[s[i]] + = 1 else : # add the character to the dictionary with a count of 1 tempCount[s[i]] = 1 # return the result string return ans def countAndSay(n): # initialize the result string with "1" res = "1" # loop n-1 times to generate the sequence of strings for i in range ( 1 , n): res = generator(res) # return the result string return res N = 3 # call the countAndSay function with input N and print the result print (countAndSay(N)) # This Code is Contributed by chinmaya121221 |
C#
using System; using System.Collections.Generic; class GFG { // generator function returns int string from prev int // string e.g. -> it will return '1211' for '21' ( One 2's // and One 1) static string generator( string str) { string ans = "" ; Dictionary< char , int > tempCount = new Dictionary< char , int >(); // It is used to count integer sequence for ( int i = 0; i < str.Length + 1; i++) { // when current char is different from prev one we // clear the map and update the ans if (i == str.Length || !tempCount.ContainsKey(str[i]) && i > 0) { ans += tempCount[str[i - 1]].ToString() + str[i - 1]; tempCount.Clear(); } // when current char is same as prev one we increase // it's count value if (i == str.Length){ tempCount.Add( '\0' , 1); } else { if (tempCount.ContainsKey(str[i])){ tempCount[str[i]]++; } else { if (i != str.Length)tempCount.Add(str[i], 1); } } } return ans; } static string countnndSay( int n) { string res = "1" ; // res variable keep tracks of string // from 1 to n-1 // For loop iterates for n-1 time and generate strings // in sequence "1" -> "11" -> "21" -> "1211" for ( int i = 1; i < n; i++) { res = generator(res); } return res; } // Driver Code public static void Main() { int N = 3; Console.WriteLine(countnndSay(N)); } } |
Javascript
// generator function returns the count-and-say string for the previous string // e.g. it will return '1211' for '21' (One 2's and One 1's) function generator(str) { let ans = "" ; let tempCount = new Map(); // It is used to count integer sequences for (let i = 0; i < str.length + 1; i++) { // When the current character is different from the previous one, // we clear the map and update the ans if (!tempCount.has(str[i]) && i > 0) { const prev = tempCount.get(str[i - 1]); ans += prev + str[i - 1]; tempCount.clear(); } // When the current character is the same as the previous one, // we increase its count value tempCount.set(str[i], (tempCount.get(str[i]) || 0) + 1); } return ans; } function countAndSay(n) { let res = "1" ; // res variable keeps track of strings from 1 to n-1 // For loop iterates n-1 times and generates strings in sequence // "1" -> "11" -> "21" -> "1211" for (let i = 1; i < n; i++) { res = generator(res); } return res; } const N = 3; console.log(countAndSay(N)); |
21
Thanks to Utkarsh and Neeraj for suggesting the above solution.
Please write comments if you find anything incorrect, or if you want to share more information about the topic discussed above
Using dynamic programming:
The idea behind the dynamic programming solution to this problem is to generate each row of the look-and-say pattern based on the previous row, and store all the intermediate results in a vector of strings. By doing this, we avoid repeating the same calculations for multiple rows and reduce the overall time complexity of the solution.
The intuition behind this approach is that the look-and-say pattern is self-referential, meaning that each row can be generated from the previous row by counting the consecutive occurrences of each character. Therefore, if we have the ‘i’th row of the look-and-say pattern, we can generate the ‘i+1’th row by counting the consecutive occurrences of each character in the ‘i’th row.
Follow the steps to implement the above approach:
1. Initialize a vector of strings to store the intermediate results. Set the first element of the vector to “1”, which represents the first row of the look-and-say pattern.
2. Use a for loop to generate each row of the look-and-say pattern, starting from the second row (i = 1) up to the nth row (i < n).
3. For each iteration of the loop, initialize an empty string temp to store the next row of the look-and-say pattern.
4. Use a for loop to iterate through the current row of the look-and-say pattern, stored in the i-1th element of the vector.
5. Within the inner for loop, use a while loop to count the number of consecutive occurrences of the same character.
6. After the while loop, append the count of consecutive occurrences and the current character to the temp string.
7. After the inner for loop, add the temp string to the vector of strings as the ith element, which represents the next row of the look-and-say pattern.
8. After the outer for loop, return the nth element of the vector of strings, which represents the nth row of the look-and-say pattern
Below is the implementation of the above approach
C++
// C++ code to implement the above approach #include <iostream> #include <vector> using namespace std; // Function to generate the nth row of the look-and-say // pattern string generateNthRow( int n) { //vector to store all the intermediary results vector<string> dp(n + 1); //initialization dp[1] = "1" ; for ( int i = 2; i <= n; i++) { string prev = dp[i - 1]; string curr = "" ; for ( int j = 0; j < prev.size(); j++) { int count = 1; while (j + 1 < prev.size() && prev[j] == prev[j + 1]) { count++; j++; } curr += to_string(count) + prev[j]; } dp[i] = curr; } return dp[n]; } int main() { int n = 3; cout << generateNthRow(n) << endl; return 0; } //This code is contributed by Veerendra Singh Rajpoot |
Java
// Java program for the above approach import java.util.*; public class Main { public static String generateNthRow( int n) { // vector to store all the intermediary results List<String> dp = new ArrayList<>(n + 1 ); // initialization dp.add( "1" ); for ( int i = 2 ; i <= n; i++) { String prev = dp.get(i - 1 - 1 ); String curr = "" ; for ( int j = 0 ; j < prev.length(); j++) { int count = 1 ; while (j + 1 < prev.length() && prev.charAt(j) == prev.charAt(j + 1 )) { count++; j++; } curr += Integer.toString(count) + prev.charAt(j); } dp.add(curr); } return dp.get(n - 1 ); } public static void main(String[] args) { int n = 3 ; System.out.println(generateNthRow(n)); } } // This code is contributed by codebraxnzt |
Python3
# Function to generate the nth row of the look-and-say pattern def generateNthRow(n): # List to store all the intermediary results dp = [''] * (n + 1 ) # Initialization dp[ 1 ] = '1' for i in range ( 2 , n + 1 ): prev = dp[i - 1 ] curr = '' j = 0 while j < len (prev): count = 1 while j + 1 < len (prev) and prev[j] = = prev[j + 1 ]: count + = 1 j + = 1 curr + = str (count) + prev[j] j + = 1 dp[i] = curr return dp[n] # Example usage n = 3 print (generateNthRow(n)) |
C#
using System; using System.Collections.Generic; public class Program { public static string GenerateNthRow( int n) { // Vector to store all the intermediary results List< string > dp = new List< string >(n + 1); // Initialization dp.Add( "1" ); for ( int i = 2; i <= n; i++) { // Get the previous row of the sequence string prev = dp[i - 1 - 1]; // Create the current row of the sequence string curr = "" ; for ( int j = 0; j < prev.Length; j++) { int count = 1; // Count the number of consecutive digits in the previous row while (j + 1 < prev.Length && prev[j] == prev[j + 1]) { count++; j++; } // Add the count and digit to the current row curr += count.ToString() + prev[j]; } // Add the current row to the list of intermediary results dp.Add(curr); } // Return the Nth row of the sequence return dp[n - 1]; } // Driver code public static void Main( string [] args) { int n = 3; Console.WriteLine(GenerateNthRow(n)); } } |
Javascript
// JavaScript program for the above approach function generateNthRow(n) { // array to store all the intermediary results let dp = [ "1" ]; // initialization for (let i = 2; i <= n; i++) { let prev = dp[i - 1 - 1]; let curr = "" ; for (let j = 0; j < prev.length; j++) { let count = 1; while (j + 1 < prev.length && prev.charAt(j) == prev.charAt(j + 1)) { count++; j++; } curr += count.toString() + prev.charAt(j); } dp.push(curr); } return dp[n - 1]; } // Driver Code let n = 3; console.log(generateNthRow(n)); |
21
Explanation of the above code: here we are using a vector of strings dp to store the generated rows of the look-and-say pattern. We initialize the first element of the dp vector with the string “1”.
In the for loop, we iterate from the 2nd row to the nth row and generate each row based on the previous row. We use a nested for loop to iterate over each character of the previous row. The outer for loop keeps track of the current character, and the inner while loop counts the number of consecutive occurrences of the same character. After counting the number of occurrences, we add the count and the current character to the curr string, which represents the current row of the look-and-say pattern. Finally, we update the dp[i] with the curr string.
After the loop, we return the nth row stored in dp[n]
Time Complexity :O(n*m) where n is the number of rows to generate, and m is the maximum length of a row in the look-and-say pattern.
space complexity : O(n * m), where n is the number of rows to generate and m is the maximum length of a row in the look-and-say pattern.
Another Approach(Using Stacks):
Intuition:
the problem is simpler if we understand it as just feeding the output of the counting function into itself n times.
f(1) => 11 // base case
f(11) => 21
f(21) => 1211
f(1211) => 111221
.
.
.
n times
each time we are passing a number into the function we are just counting the number of same digits in a sequence and replacing the digit with the count and the digit
eg 33333 -> there are 5 threes so we return 53(count + digit)
Approach:
we use a stack to count the digits.
if the stack is empty we push to the stack
if the current digit is same as the digit on the top of the stack then we push to the stach.
if the current digit is not the same then we get the length of the stack and the digit in top of the stack return the len + digit as a string, empty the stack and push the current element to the top of the stack
we do this n times. each time the output of the function will be the input to the next iteration.
C++
// C++ code to implement the above approach #include <bits/stdc++.h> using namespace std; // Function to generate the nth row of the look-and-say // pattern string countAndSay( int n) { if (n == 1) return "1" ; std::string ret{ "" }; std::string strToCount{ countAndSay( n - 1) }; // we need to count and say the n-1th term std::stack< char > stack; for ( int i{ 0 }; i <= strToCount.length(); ++i) { // if we're at the end OR we find a num that's // different... we add the length of the stack to ret // and also the num we've been counting then, we // empty the stack to count the next number if (i == strToCount.length() || !stack.empty() && stack.top() != strToCount[i]) { std::stringstream ss; std::string toAdd{ "" }; ss << stack.size(); ss >> toAdd; ret += toAdd; ret += stack.top(); while (!stack.empty()) stack.pop(); } if (i != strToCount.length()) stack.push(strToCount[i]); } return ret; } int main() { int n = 3; cout << countAndSay(n) << endl; return 0; } |
Java
/*package whatever //do not write package name here */ import java.io.*; import java.util.Stack; public class GFG{ public static String countAndSay( int n) { if (n == 1 ) return "1" ; String strToCount = countAndSay(n - 1 ); StringBuilder ret = new StringBuilder(); Stack<Character> stack = new Stack<>(); for ( int i = 0 ; i <= strToCount.length(); ++i) { if (i == strToCount.length() || (!stack.empty() && stack.peek() != strToCount.charAt(i))) { ret.append(stack.size()).append(stack.peek()); stack.clear(); } if (i != strToCount.length()) stack.push(strToCount.charAt(i)); } return ret.toString(); } public static void main(String[] args) { int n = 3 ; System.out.println(countAndSay(n)); } } |
Python3
# Function to generate the nth row of the look-and-say pattern def count_and_say(n): if n = = 1 : return "1" ret = "" # we need to count and say the n-1th term str_to_count = count_and_say(n - 1 ) stack = [] for i in range ( len (str_to_count) + 1 ): # if we're at the end OR we find a num that's different... we add the length of the stack to ret # and also the num we've been counting then, we empty the stack to count the next number if i = = len (str_to_count) or (stack and stack[ - 1 ] ! = str_to_count[i]): to_add = str ( len (stack)) + stack[ - 1 ] ret + = to_add stack.clear() if i ! = len (str_to_count): stack.append(str_to_count[i]) return ret def main(): n = 3 print (count_and_say(n)) if __name__ = = "__main__" : main() # This code is contributed by shivamgupta310570 |
C#
// C# code to implement the above approach using System; using System.Collections.Generic; namespace CountAndSay { class Program { // Function to generate the nth term of the "count and say" sequence static string CountAndSay( int n) { // Base case: return "1" for n = 1 if (n == 1) return "1" ; // String to store the current term being generated string ret = "" ; // Recursively calculate the (n-1)th term string strToCount = CountAndSay(n - 1); // Stack to count consecutive occurrences of the same digit Stack< char > stack = new Stack< char >(); // Loop through the characters of the (n-1)th term for ( int i = 0; i <= strToCount.Length; ++i) { // If we're at the end of the string or the stack is not empty and the current character is different from the top of the stack if (i == strToCount.Length || (stack.Count > 0 && stack.Peek() != strToCount[i])) { // Add the count and digit value to the result ret += stack.Count.ToString() + stack.Peek(); // Clear the stack to count the next number stack.Clear(); } // If we're not at the end of the string, push the current character onto the stack if (i != strToCount.Length) stack.Push(strToCount[i]); } // Return the nth term of the "count and say" sequence return ret; } static void Main( string [] args) { int n = 3; // Generate and print the 3rd term of the "count and say" sequence Console.WriteLine(CountAndSay(n)); } } } |
Javascript
function countAndSay(n) { if (n === 1) return "1" ; let strToCount = countAndSay(n - 1); let ret = "" ; let stack = []; for (let i = 0; i <= strToCount.length; ++i) { if (i === strToCount.length || (stack.length !== 0 && stack[stack.length - 1] !== strToCount[i])) { ret += stack.length + stack[stack.length - 1]; stack = []; } if (i !== strToCount.length) stack.push(strToCount[i]); } return ret; } let n = 3; console.log(countAndSay(n)); |
21
Time complexity: O(kn),since we are calling the function n times and for k length of the string
Auxiliary Space: O(kn),stack space needed.
Ready to dive in? Explore our Free Demo Content and join our DSA course, trusted by over 100,000 neveropen!