Thursday, December 26, 2024
Google search engine
HomeData Modelling & AIMaximum Length Chain of Pairs | DP-20

Maximum Length Chain of Pairs | DP-20

You are given n pairs of numbers. In every pair, the first number is always smaller than the second number. A pair (c, d) can follow another pair (a, b) if b < c. Chain of pairs can be formed in this fashion. Find the longest chain which can be formed from a given set of pairs. 
Source: Amazon Interview | Set 2
For example, if the given pairs are {{5, 24}, {39, 60}, {15, 28}, {27, 40}, {50, 90} }, then the longest chain that can be formed is of length 3, and the chain is {{5, 24}, {27, 40}, {50, 90}}

Recommended Practice

Method 1: This problem is a variation of standard Longest Increasing Subsequence problem. Following is a simple two step process. 
1) Sort given pairs in increasing order of first (or smaller) element. Why do we need sorting? Consider the example {{6, 8}, {3, 4}} to understand the need of sorting. If we proceed to second step without sorting, we get output as 1. But the correct output is 2. 
2) Now run a modified LIS process where we compare the second element of already finalized LIS with the first element of new LIS being constructed. 
The following code is a slight modification of method 2 of this post.

C++




// CPP program for above approach
#include <bits/stdc++.h>
using namespace std;
 
// Structure for a Pair
class Pair
{
    public:
    int a;
    int b;
};
 
// This function assumes that arr[]
// is sorted in increasing order
// according the first
// (or smaller) values in Pairs.
int maxChainLength( Pair arr[], int n)
{
    int i, j, max = 0;
    int *mcl = new int[sizeof( int ) * n ];
     
    /* Initialize MCL (max chain length)
    values for all indexes */
    for ( i = 0; i < n; i++ )
        mcl[i] = 1;
     
    /* Compute optimized chain
    length values in bottom up manner */
    for ( i = 1; i < n; i++ )
        for ( j = 0; j < i; j++ )
            if ( arr[i].a > arr[j].b &&
                    mcl[i] < mcl[j] + 1)
                mcl[i] = mcl[j] + 1;
     
    // mcl[i] now stores the maximum
    // chain length ending with Pair i
     
    /* Pick maximum of all MCL values */
    for ( i = 0; i < n; i++ )
        if ( max < mcl[i] )
            max = mcl[i];
     
    /* Free memory to avoid memory leak */
     
    return max;
}
     
 
/* Driver code */
int main()
{
    Pair arr[] = { {5, 24}, {15, 25},
                        {27, 40}, {50, 60} };
    int n = sizeof(arr)/sizeof(arr[0]);
    cout << "Length of maximum size chain is "
                  << maxChainLength( arr, n );
    return 0;
}
 
// This code is contributed by rathbhupendra


C




#include<stdio.h>
#include<stdlib.h>
 
// Structure for a pair
struct pair
{
  int a;
  int b;
};
 
// This function assumes that
// arr[] is sorted in increasing order
// according the first
// (or smaller) values in pairs.
int maxChainLength( struct pair arr[], int n)
{
   int i, j, max = 0;
   int *mcl = (int*) malloc ( sizeof( int ) * n );
 
   /* Initialize MCL (max chain
     length) values for all indexes */
   for ( i = 0; i < n; i++ )
      mcl[i] = 1;
 
   /* Compute optimized chain length
   values in bottom up manner */
   for ( i = 1; i < n; i++ )
      for ( j = 0; j < i; j++ )
         if ( arr[i].a > arr[j].b &&
                mcl[i] < mcl[j] + 1)
            mcl[i] = mcl[j] + 1;
 
   // mcl[i] now stores the maximum
   // chain length ending with pair i
   
   /* Pick maximum of all MCL values */
   for ( i = 0; i < n; i++ )
      if ( max < mcl[i] )
         max = mcl[i];
 
   /* Free memory to avoid memory leak */
   free( mcl );
 
   return max;
}
 
 
/* Driver program to test above function */
int main()
{
    struct pair arr[] = { {5, 24}, {15, 25},
                          {27, 40}, {50, 60} };
    int n = sizeof(arr)/sizeof(arr[0]);
    printf("Length of maximum size chain is %d\n",
           maxChainLength( arr, n ));
    return 0;
}


Java




// Java program for above approach
import java.io.*;
 
class Pair {
    int a;
    int b;
 
    public Pair(int a, int b)
    {
        this.a = a;
        this.b = b;
    }
 
    // This function assumes that
    // arr[] is sorted in increasing order
    // according the first (or smaller)
    // values in pairs.
    static int maxChainLength(Pair arr[], int n)
    {
        int i, j, max = 0;
        int mcl[] = new int[n];
 
        /* Initialize MCL (max chain length)
         values for all indexes */
        for (i = 0; i < n; i++)
            mcl[i] = 1;
 
        /* Compute optimized chain length
         values in bottom up manner */
        for (i = 1; i < n; i++)
            for (j = 0; j < i; j++)
                if (arr[i].a > arr[j].b
                    && mcl[i] < mcl[j] + 1)
                    mcl[i] = mcl[j] + 1;
 
        // mcl[i] now stores the maximum
        // chain length ending with pair i
 
        /* Pick maximum of all MCL values */
        for (i = 0; i < n; i++)
            if (max < mcl[i])
                max = mcl[i];
 
        return max;
    }
 
    /* Driver program to test above function */
    public static void main(String[] args)
    {
        Pair arr[] = new Pair[] { new Pair(5, 24),
                                  new Pair(15, 25),
                                  new Pair(27, 40),
                                  new Pair(50, 60) };
        System.out.println(
            "Length of maximum size chain is "
            + maxChainLength(arr, arr.length));
    }
}


Python3




# Python program for above approach
class Pair(object):
    def __init__(self, a, b):
        self.a = a
        self.b = b
 
# This function assumes
# that arr[] is sorted in increasing
# order according the
# first (or smaller) values in pairs.
def maxChainLength(arr, n):
     
    max = 0
 
    # Initialize MCL(max chain
    # length) values for all indices
    mcl = [1 for i in range(n)]
 
    # Compute optimized chain
    # length values in bottom up manner
    for i in range(1, n):
        for j in range(0, i):
            if (arr[i].a > arr[j].b and
                  mcl[i] < mcl[j] + 1):
                mcl[i] = mcl[j] + 1
 
    # mcl[i] now stores the maximum
    # chain length ending with pair i
 
    # Pick maximum of all MCL values
    for i in range(n):
        if (max < mcl[i]):
            max = mcl[i]
 
    return max
 
# Driver program to test above function
arr = [Pair(5, 24), Pair(15, 25),
       Pair(27, 40), Pair(50, 60)]
 
print('Length of maximum size chain is',
      maxChainLength(arr, len(arr)))
 
# This code is contributed by Soumen Ghosh


C#




// Dynamic C# program to find
// Maximum Length Chain of Pairs
using System;
 
class Pair
{
    int a;
    int b;
     
    public Pair(int a, int b)
    {
        this.a = a;
        this.b = b;
    }
     
    // This function assumes that arr[]
    // is sorted in increasing order
    // according the first (or smaller)
    // values in pairs.
    static int maxChainLength(Pair []arr, int n)
    {
        int i, j, max = 0;
        int []mcl = new int[n];
         
        // Initialize MCL (max chain length)
        // values for all indexes
        for(i = 0; i < n; i++ )
            mcl[i] = 1;
         
        // Compute optimized chain length
        // values in bottom up manner
        for(i = 1; i < n; i++)
            for (j = 0; j < i; j++)
                if(arr[i].a > arr[j].b &&
                   mcl[i] < mcl[j] + 1)
                    
          // mcl[i] now stores the maximum
          // chain length ending with pair i
          mcl[i] = mcl[j] + 1;
 
        // Pick maximum of all MCL values
        for ( i = 0; i < n; i++ )
            if (max < mcl[i] )
                max = mcl[i];
         
        return max;
    }
 
    // Driver Code
    public static void Main()
    {
        Pair []arr = new Pair[]
        {new Pair(5,24), new Pair(15, 25),
        new Pair (27, 40), new Pair(50, 60)};
        Console.Write("Length of maximum size
                                chain is " +
                 maxChainLength(arr, arr.Length));
    }
}
 
// This code is contributed by nitin mittal.


Javascript




<script>
 
// Javascript program for above approach
 
class Pair
{
    constructor(a,b)
    {
        this.a=a;
        this.b=b;
    }
}
 
// This function assumes that
    // arr[] is sorted in increasing order
    // according the first (or smaller)
    // values in pairs.
function maxChainLength(arr,n)
{
    let i, j, max = 0;
       let mcl = new Array(n);
       
       /* Initialize MCL (max chain length)
        values for all indexes */
       for ( i = 0; i < n; i++ )
          mcl[i] = 1;
       
       /* Compute optimized chain length
        values in bottom up manner */
       for ( i = 1; i < n; i++ )
          for ( j = 0; j < i; j++ )
             if ( arr[i].a > arr[j].b &&
                    mcl[i] < mcl[j] + 1)
                mcl[i] = mcl[j] + 1;
       
       // mcl[i] now stores the maximum
       // chain length ending with pair i
       
       /* Pick maximum of all MCL values */
       for ( i = 0; i < n; i++ )
          if ( max < mcl[i] )
             max = mcl[i];
       
       return max;
}
 
/* Driver program to test above function */
let arr=[ new Pair(5,24),
          new Pair(15, 25),                    
          new Pair (27, 40),
          new Pair(50, 60)];
           
document.write("Length of maximum size chain is " +
                 maxChainLength(arr, arr.length));
 
// This code is contributed by avanitrachhadiya2155
</script>


Output

Length of maximum size chain is 3

Time Complexity: O(n^2) where n is the number of pairs. 

Auxiliary Space: O(n) because of the extra array used to store maximum chain length.

The given problem is also a variation of Activity Selection problem and can be solved in (nLogn) time. To solve it as a activity selection problem, consider the first element of a pair as start time in activity selection problem, and the second element of pair as end time. 

Method 2: 

  • Sort given pairs in increasing order of second values.
  • Take ans = 0 initially and prev = INT_MIN.
  • Now iterate on the given array and if  arr[i].first>prev , then increase answer and set   prev=arr[i].second.
  • Finally return answer.

C++




#include <bits/stdc++.h>
using namespace std;
 
struct val
{
    int first;
    int second;
};
 
//function that helps to sort the structure p in increasing order of second values
bool static comp(val fst, val sec){
        return fst.second<sec.second;
    }
 
//function to calculate the max length chain
int maxChainLen(struct val p[],int n){
        //Your code here
        sort(p,p+n,comp);
        int prev=-1e9;
        int ans=0;
        for(int i=0;i<n;i++){
            if(p[i].first>prev){
                ans++;
                prev=p[i].second;
            }
        }
        return ans;
    }
 
int main() {
 
 
    int n = 5;
    val p[n];
    p[0].first = 5;
    p[0].second = 24;
   
    p[1].first = 39;
    p[1].second = 60;
   
    p[2].first = 15;
    p[2].second = 28;
   
    p[3].first = 27;
    p[3].second = 40;
   
    p[4].first = 50;
    p[4].second = 90;
       
    // Function Call
    cout << maxChainLen(p, n) << endl;
    return 0;
}


Java




// Java Implementation for above approach
import java.util.*;
import java.io.*;
 
class GFG {
 
  // function to calculate the max length chain
  public static int maxChainLen(int p[][], int n) {
 
    Arrays.sort(p, new C());
 
    int prev = -1000000000;
    int ans = 0;
    for (int i = 0; i < n; i++) {
      if (p[i][0] > prev) {
        ans++;
        prev = p[i][1];
      }
    }
    return ans;
  }
 
  // function that helps to sort the structure p in increasing order of second values
  public static class C implements Comparator<int[]> {
    public int compare(int[] a1, int[] a2) {
      return Integer.compare(a1[1], a2[1]);
    }
  }
 
  // Driver Code
  public static void main (String[] args) {
    int n = 5;
    int[][] p = {{5, 24}, {39, 60}, {15, 28}, {27, 40}, {50, 90}};
    // Function Call
    System.out.println(maxChainLen(p, n));
  }
}
 
// This code is contributed by ajaymakvana


Python3




# Python3 implementation of the approach
from typing import List, Tuple
 
def max_chain_len(p: List[Tuple[int, int]]) -> int:
   
    # Your code here
    p.sort(key=lambda x: x[1])
    prev = -1e9
    ans = 0
    for x in p:
        if x[0] > prev:
            ans += 1
            prev = x[1]
    return ans
 
n = 5
p = [
    (5, 24),
    (39, 60),
    (15, 28),
    (27, 40),
    (50, 90)
]
 
# Function Call
print(max_chain_len(p))
 
# This code is contributed by phasing17


C#




// C# program to implement the approach
using System;
using System.Collections;
using System.Collections.Generic;
using System.Linq;
 
class GFG
{
   
// function to calculate the max length chain
public static int MaxChainLen(int[][] p, int n)
{
Array.Sort(p, new C());
    int prev = -1000000000;
    int ans = 0;
    for (int i = 0; i < n; i++)
    {
        if (p[i][0] > prev)
        {
            ans++;
            prev = p[i][1];
        }
    }
    return ans;
}
 
// function that helps to sort the structure p in increasing order of second values
public class C : IComparer<int[]>
{
    public int Compare(int[] a1, int[] a2)
    {
        return Comparer<int>.Default.Compare(a1[1], a2[1]);
    }
}
 
// Driver Code
static void Main(string[] args)
{
    int n = 5;
    int[][] p = {
        new int[] { 5, 24 },
        new int[] { 39, 60 },
        new int[] { 15, 28 },
        new int[] { 27, 40 },
        new int[] { 50, 90 }
    };
    // Function Call
    Console.WriteLine(MaxChainLen(p, n));
}
 
}
 
// This code is contributed by phasing17


Javascript




// JS code to implement the approach
 
// JavaScript implementation of the approach
function maxChainLen(p) {
  // Your code here
  p.sort((a, b) => a[1] - b[1]);
  let prev = -1e9;
  let ans = 0;
  for (const x of p) {
    if (x[0] > prev) {
      ans += 1;
      prev = x[1];
    }
  }
  return ans;
}
 
const n = 5;
const p = [  [5, 24],
  [39, 60],
  [15, 28],
  [27, 40],
  [50, 90]
];
 
// Function Call
console.log(maxChainLen(p));
 
// This code is contributed by phasing17


Output

3

Time Complexity: O(n*log2n).

Auxiliary Space: O(1) as no extra space has been used.

Another approach( Top-down Dynamic programming): Now we will explore the way of solving this problem using the top-down approach of dynamic programming (recursion + memoization). 
Since we are going to solve the above problem using top down method our first step is to figure out the recurrence relation. The best and the easiest way to get the recurrence relation is to think about the choices that we have at each state or position. 
If we look at the above problem carefully, we find two choices to be present at each position/index. The two choices are: 
Choice 1: To select the element at the particular position and explore the rest, (or) 
Choice 2: To leave the element at that position and explore the rest. 
Please note here that we can select the element at a particular position only if first element at that position is greater than the second element that we have previously chosen (this is a constraint given in the question). Hence, in the recursion we maintain a variable which would tell us the previous element that we picked. 
Also, we have to maximize our answer. Hence, we have to find out the maximum resulting option by exploring the above two choices at each position. 
The resulting recurrence relation would be: 

  T(n) = max( maxlenchain(p,n,p[pos].second,0)+1,maxlenchain(p,n,prev_choosen_ele,pos+1) ) 
Please note the function signature is as follows: 
int cal(struct val p[],int n,int prev_choosen_ele,int pos);

Nevertheless, we should not forget our base condition in recursion. If not, our code would enjoy a vacation by just executing forever and not stopping at all. 
So, our base condition for this problem is quite simple. If we reach the end of our exploration, we just return 0, as no more chains would be possible.

  if(pos >= n) return 0;

To avoid the repetitive task, we do the dynamic programming magic (It is a magic to reduce your time complexity). We store the position and previous element in a map. If we ever happened to come to the same position with the same previous element we do not recompute again. We just return the answer from the map.
Below is the implementation of the above approach:

C++14




// CPP program for above approach
#include <bits/stdc++.h>
using namespace std;
 
// Structure val
struct val
{
    int first;
    int second;
};
 
map<pair<int, int>, int> m;
 
// Memoisation function
int findMaxChainLen(struct val p[], int n,
                        int prev, int pos)
{
     
    // Check if pair { pos, prev } exists
    // in m
    if (m.find({ pos, prev }) != m.end())
    {
        return m[{ pos, prev }];
    }
 
    // Check if pos is >=n
    if (pos >= n)
        return 0;
 
    // Check if p[pos].first is
    // less than prev
    if (p[pos].first <= prev)
    {
        return findMaxChainLen(p, n, prev,
                                 pos + 1);
    }
 
    else
    {
        int ans = max(findMaxChainLen(p, n,
                             p[pos].second, 0) + 1,
                      findMaxChainLen(p, n,
                                   prev, pos + 1));
        m[{ pos, prev }] = ans;
        return ans;
    }
}
 
// Function to calculate maximum
// chain length
int maxChainLen(struct val p[], int n)
{
    m.clear();
   
    // Call memoisation function
    int ans = findMaxChainLen(p, n, 0, 0);
    return ans;
}
 
// Driver Code
int main()
{
 
    int n = 5;
    val p[n];
    p[0].first = 5;
    p[0].second = 24;
 
    p[1].first = 39;
    p[1].second = 60;
 
    p[2].first = 15;
    p[2].second = 28;
 
    p[3].first = 27;
    p[3].second = 40;
 
    p[4].first = 50;
    p[4].second = 90;
     
    // Function Call
    cout << maxChainLen(p, n) << endl;
    return 0;
}


Java




// Java program for above approach
import java.util.*;
 
class GFG{
 
// Structure val
static class val
{
    int first;
    int second;
};
 
static class pair
{
    int first, second;
     
    public pair(int first, int second) 
    {
        this.first = first;
        this.second = second;
    }
     
    @Override
    public int hashCode()
    {
        final int prime = 31;
        int result = 1;
        result = prime * result + first;
        result = prime * result + second;
        return result;
    }
     
    @Override
    public boolean equals(Object obj)
    {
        if (this == obj)
            return true;
        if (obj == null)
            return false;
        if (getClass() != obj.getClass())
            return false;
             
        pair other = (pair) obj;
        if (first != other.first)
            return false;
        if (second != other.second)
            return false;
             
        return true;
    }   
     
}
 
static Map<pair, Integer> m = new HashMap<>();
 
// Memoisation function
static int findMaxChainLen(val p[], int n,
                           int prev, int pos)
{
     
    // Check if pair { pos, prev } exists
    // in m
    if (m.containsKey(new pair(pos, prev)))
    {
        return m.get(new pair(pos, prev));
    }
 
    // Check if pos is >=n
    if (pos >= n)
        return 0;
 
    // Check if p[pos].first is
    // less than prev
    if (p[pos].first <= prev)
    {
        return findMaxChainLen(p, n, prev,
                               pos + 1);
    }
 
    else
    {
        int ans = Math.max(findMaxChainLen(
                               p, n, p[pos].second, 0) + 1,
                           findMaxChainLen(
                               p, n, prev, pos + 1));
                                
        m.put(new pair(pos, prev), ans);
        return ans;
    }
}
 
// Function to calculate maximum
// chain length
static int maxChainLen(val p[], int n)
{
    m.clear();
   
    // Call memoisation function
    int ans = findMaxChainLen(p, n, 0, 0);
    return ans;
}
 
// Driver Code
public static void main(String[] args)
{
    int n = 5;
    val []p = new val[n];
    for(int i = 0; i < n; i++)
        p[i] = new val();
         
    p[0].first = 5;
    p[0].second = 24;
 
    p[1].first = 39;
    p[1].second = 60;
 
    p[2].first = 15;
    p[2].second = 28;
 
    p[3].first = 27;
    p[3].second = 40;
 
    p[4].first = 50;
    p[4].second = 90;
     
    // Function Call
    System.out.print(maxChainLen(p, n) + "\n");
}
}
 
// This code is contributed by 29AjayKumar


Python3




# Python program for above approach
 
# Structure val
class val:
    def __init__(self,first,second):
        self.first = first
        self.second = second
     
# Memoisation function
def findMaxChainLen(p, n, prev, pos):
     
    global m
     
    # Check if pair { pos, prev } exists
    # in m
    if (val(pos, prev) in m):
        return m[val(pos, prev)]
 
    # Check if pos is >=n
    if (pos >= n):
        return 0
 
    # Check if p[pos].first is
    # less than prev
    if (p[pos].first <= prev):
        return findMaxChainLen(p, n, prev, pos + 1)
 
    else:
        ans = max(findMaxChainLen(p, n,
                            p[pos].second, 0) + 1,
                    findMaxChainLen(p, n,
                                prev, pos + 1))
        m[val(pos, prev)] = ans
        return ans
 
# Function to calculate maximum
# chain length
def maxChainLen(p,n):
 
    global m
    m.clear()
 
    # Call memoisation function
    ans = findMaxChainLen(p, n, 0, 0)
    return ans
 
# Driver Code
n = 5
p = [0]*n
p[0] = val(5,24)
 
p[1] = val(39,60)
 
p[2] = val(15,28)
 
p[3] = val(27,40)
 
p[4] = val(50,90)
 
m = {}
 
# Function Call
print(maxChainLen(p, n))
 
# This code is contributed by shinjanpatra


C#




// C# program for above approach
 
using System;
using System.Collections.Generic;
 
class GFG{
 
  // Structure val
  class val
  {
    public int first;
    public int second;
  };
 
  class pair
  {
    public int first, second;
 
    public pair(int first, int second) 
    {
      this.first = first;
      this.second = second;
    }
 
    public override int GetHashCode()
    {
      int prime = 31;
      int result = 1;
      result = prime * result + first;
      result = prime * result + second;
      return result;
    }
 
    public bool Equals(pair other)
    {
      return other != null && (other.first == first) && (other.second == second);
    }   
 
  }
 
  static Dictionary<pair, int> m = new Dictionary<pair, int>();
 
  // Memoisation function
  static int findMaxChainLen(val[] p, int n,
                             int prev, int pos)
  {
 
    // Check if pair { pos, prev } exists
    // in m
    if (m.ContainsKey(new pair(pos, prev)))
    {
      return m[new pair(pos, prev)];
    }
 
    // Check if pos is >=n
    if (pos >= n)
      return 0;
 
    // Check if p[pos].first is
    // less than prev
    if (p[pos].first <= prev)
    {
      return findMaxChainLen(p, n, prev,
                             pos + 1);
    }
 
    else
    {
      int ans = Math.Max(findMaxChainLen(
        p, n, p[pos].second, 0) + 1,
                         findMaxChainLen(
                           p, n, prev, pos + 1));
 
      m[new pair(pos, prev)] = ans;
      return ans;
    }
  }
 
  // Function to calculate maximum
  // chain length
  static int maxChainLen(val[] p, int n)
  {
    m.Clear();
 
    // Call memoisation function
    int ans = findMaxChainLen(p, n, 0, 0);
    return ans;
  }
 
  // Driver Code
  public static void Main(string[] args)
  {
    int n = 5;
    val []p = new val[n];
    for(int i = 0; i < n; i++)
      p[i] = new val();
 
    p[0].first = 5;
    p[0].second = 24;
 
    p[1].first = 39;
    p[1].second = 60;
 
    p[2].first = 15;
    p[2].second = 28;
 
    p[3].first = 27;
    p[3].second = 40;
 
    p[4].first = 50;
    p[4].second = 90;
 
    // Function Call
    Console.WriteLine(maxChainLen(p, n) + "\n");
  }
}
 
// This code is contributed by phasing17


Javascript




<script>
 
// JavaScript program for above approach
 
 
// Structure val
class val
{
    constructor(first,second){
        this.first = first;
        this.second = second;
    }
};
 
let m = new Map();
 
// Memoisation function
function findMaxChainLen(p,n,prev,pos)
{
     
    // Check if pair { pos, prev } exists
    // in m
    if (m.has(new val(pos, prev)))
        return m.get(new val(pos, prev));
 
    // Check if pos is >=n
    if (pos >= n)
        return 0;
 
    // Check if p[pos].first is
    // less than prev
    if (p[pos].first <= prev)
    {
        return findMaxChainLen(p, n, prev,
                                pos + 1);
    }
 
    else
    {
        let ans = Math.max(findMaxChainLen(p, n,
                            p[pos].second, 0) + 1,
                    findMaxChainLen(p, n,
                                prev, pos + 1));
        m.set(new val(pos, prev),ans);
        return ans;
    }
}
 
// Function to calculate maximum
// chain length
function maxChainLen(p,n)
{
    m.clear();
 
    // Call memoisation function
    let ans = findMaxChainLen(p, n, 0, 0);
    return ans;
}
 
// Driver Code
let n = 5;
let p = new Array(n);
p[0] = new val(5,24);
 
p[1] = new val(39,60);
 
p[2] = new val(15,28);
 
p[3] = new val(27,40);
 
p[4] = new val(50,90);
 
// Function Call
document.write(maxChainLen(p, n),"</br>");
 
// code is contributed by shinjanpatra
 
</script>


Output

3

Time Complexity: O(n2).
Auxiliary Space: O(n2), due to the use of a map to store previously calculated values.

Please write comments if you find anything incorrect, or you want to share more information about the topic discussed above.

Feeling lost in the world of random DSA topics, wasting time without progress? It’s time for a change! Join our DSA course, where we’ll guide you on an exciting journey to master DSA efficiently and on schedule.
Ready to dive in? Explore our Free Demo Content and join our DSA course, trusted by over 100,000 neveropen!

RELATED ARTICLES

Most Popular

Recent Comments