Wednesday, January 1, 2025
Google search engine
HomeData Modelling & AIDistribute N candies among K people

Distribute N candies among K people

Given N candies and K people. In the first turn, the first person gets 1 candy, the second gets 2 candies, and so on till K people. In the next turn, the first person gets K+1 candies, the second person gets k+2 candies, and so on. If the number of candies is less than the required number of candies at every turn, then the person receives the remaining number of candies. 
The task is to find the total number of candies every person has at the end. 
Examples:

Input: N = 7, K = 4 
Output: 1 2 3 1 
At the first turn, the fourth people has to be given 4 candies, but there is 
only 1 left, hence he takes one only. 

Input: N = 10, K = 3 
Output: 5 2 3 
At the second turn first one receives 4 and then we have no more candies left.

A naive approach is to iterate for every turn and distribute candies accordingly till candies are finished. 
Time complexity: O(Number of distributions)
A better approach is to perform every turn in O(1) by calculating sum of natural numbers till the last term of series which will be (turns*k) and subtracting the sum of natural numbers till the last term of previous series which is (turns-1)*k. Keep doing this till the sum is less than N, once it exceeds then distribute candies in the given way till possible. We call a turn completed if every person gets the desired number of candies he is to get in a turn. 
Below is the implementation of the above approach: 

C++




// C++ code for better approach
// to distribute candies
#include <bits/stdc++.h>
using namespace std;
 
// Function to find out the number of
// candies every person received
void candies(int n, int k)
{
 
    // Count number of complete turns
    int count = 0;
 
    // Get the last term
    int ind = 1;
 
    // Stores the number of candies
    int arr[k];
 
    memset(arr, 0, sizeof(arr));
 
    while (n) {
 
        // Last term of last and
        // current series
        int f1 = (ind - 1) * k;
        int f2 = ind * k;
 
        // Sum of current and last  series
        int sum1 = (f1 * (f1 + 1)) / 2;
        int sum2 = (f2 * (f2 + 1)) / 2;
 
        // Sum of current series only
        int res = sum2 - sum1;
 
        // If sum of current is less than N
        if (res <= n) {
            count++;
            n -= res;
            ind++;
        }
        else // Individually distribute
        {
            int i = 0;
 
            // First term
            int term = ((ind - 1) * k) + 1;
 
            // Distribute candies till there
            while (n > 0) {
 
                // Candies available
                if (term <= n) {
                    arr[i++] = term;
                    n -= term;
                    term++;
                }
                else // Not available
                {
                    arr[i++] = n;
                    n = 0;
                }
            }
        }
    }
 
    // Count the total candies
    for (int i = 0; i < k; i++)
        arr[i] += (count * (i + 1))
                + (k * (count * (count - 1)) / 2);
 
    // Print the total candies
    for (int i = 0; i < k; i++)
        cout << arr[i] << " ";
}
 
// Driver Code
int main()
{
    int n = 10, k = 3;
    candies(n, k);
 
    return 0;
}


Java




// Java  code for better approach
// to distribute candies
 
class GFG {
    // Function to find out the number of
    // candies every person received
    static void candies(int n, int k){
        int[] arr = new int[k];
        int j = 0;
        while(n>0){
             
            for(int i =0;i<k;i++){
                j++;
                if(n<=0){
                    break;
                }
                else{
                    if(j<n){
                        arr[i] = arr[i]+j;
                    }
                    else{
                        arr[i] = arr[i]+n;
                    }
                    n = n-j;
                }
                 
            }
        }
        for(int i:arr){
            System.out.print(i+" ");
        }
    }
            // Driver Code
      public static void main(String[] args)
      {
        int n = 10, k = 3;
        candies(n, k);
      }
    }
 
        // This code is contributed by ihritik


Python3




# Python3 code for better approach
# to distribute candies
import math as mt
 
# Function to find out the number of
# candies every person received
def candies(n, k):
 
    # Count number of complete turns
    count = 0
 
    # Get the last term
    ind = 1
 
    # Stores the number of candies
    arr = [0 for i in range(k)]
 
    while n > 0:
 
        # Last term of last and
        # current series
        f1 = (ind - 1) * k
        f2 = ind * k
 
        # Sum of current and last series
        sum1 = (f1 * (f1 + 1)) // 2
        sum2 = (f2 * (f2 + 1)) //2
 
        # Sum of current series only
        res = sum2 - sum1
 
        # If sum of current is less than N
        if (res <= n):
            count += 1
            n -= res
            ind += 1
        else: # Individually distribute
            i = 0
 
            # First term
            term = ((ind - 1) * k) + 1
 
            # Distribute candies till there
            while (n > 0):
 
                # Candies available
                if (term <= n):
                    arr[i] = term
                    i += 1
                    n -= term
                    term += 1
                else:
                    arr[i] = n
                    i += 1
                    n = 0
 
    # Count the total candies
    for i in range(k):
        arr[i] += ((count * (i + 1)) +
                   (k * (count * (count - 1)) // 2))
 
    # Print the total candies
    for i in range(k):
        print(arr[i], end = " ")
 
# Driver Code
n, k = 10, 3
candies(n, k)
 
# This code is contributed by Mohit kumar


C#




// C# code for better approach
// to distribute candies
 
using System;
class GFG
{
    // Function to find out the number of
    // candies every person received
    static void candies(int n, int k)
    {
     
        // Count number of complete turns
        int count = 0;
     
        // Get the last term
        int ind = 1;
     
        // Stores the number of candies
        int []arr=new int[k];
     
        for(int i=0;i<k;i++)
         arr[i]=0;
     
        while (n>0) {
     
            // Last term of last and
            // current series
            int f1 = (ind - 1) * k;
            int f2 = ind * k;
     
            // Sum of current and last series
            int sum1 = (f1 * (f1 + 1)) / 2;
            int sum2 = (f2 * (f2 + 1)) / 2;
     
            // Sum of current series only
            int res = sum2 - sum1;
     
            // If sum of current is less than N
            if (res <= n) {
                count++;
                n -= res;
                ind++;
            }
            else // Individually distribute
            {
                int i = 0;
     
                // First term
                int term = ((ind - 1) * k) + 1;
     
                // Distribute candies till there
                while (n > 0) {
     
                    // Candies available
                    if (term <= n) {
                        arr[i++] = term;
                        n -= term;
                        term++;
                    }
                    else // Not available
                    {
                        arr[i++] = n;
                        n = 0;
                    }
                }
            }
        }
     
        // Count the total candies
        for (int i = 0; i < k; i++)
            arr[i] += (count * (i + 1))
                    + (k * (count * (count - 1)) / 2);
     
        // Print the total candies
        for (int i = 0; i < k; i++)
            Console.Write( arr[i] + " ");
    }
     
    // Driver Code
    public static void Main()
    {
        int n = 10, k = 3;
        candies(n, k);
     
         
    }
}
 
 
// This code is contributed by ihritik


PHP




<?php
// PHP code for better approach
// to distribute candies
 
// Function to find out the number of
// candies every person received
function candies($n, $k)
{
 
    // Count number of complete turns
    $count = 0;
 
    // Get the last term
    $ind = 1;
 
    // Stores the number of candies
    $arr = array_fill(0, $k, 0) ;
     
    while ($n)
    {
 
        // Last term of last and
        // current series
        $f1 = ($ind - 1) * $k;
        $f2 = $ind * $k;
 
        // Sum of current and last series
        $sum1 = floor(($f1 * ($f1 + 1)) / 2);
        $sum2 = floor(($f2 * ($f2 + 1)) / 2);
 
        // Sum of current series only
        $res = $sum2 - $sum1;
 
        // If sum of current is less than N
        if ($res <= $n)
        {
            $count++;
            $n -= $res;
            $ind++;
        }
        else // Individually distribute
        {
            $i = 0;
 
            // First term
            $term = (($ind - 1) * $k) + 1;
 
            // Distribute candies till there
            while ($n > 0)
            {
 
                // Candies available
                if ($term <= $n)
                {
                    $arr[$i++] = $term;
                    $n -= $term;
                    $term++;
                }
                else // Not available
                {
                    $arr[$i++] = $n;
                    $n = 0;
                }
            }
        }
    }
 
    // Count the total candies
    for ($i = 0; $i < $k; $i++)
        $arr[$i] += floor(($count * ($i + 1)) + ($k *
                          ($count * ($count - 1)) / 2));
 
    // Print the total candies
    for ($i = 0; $i < $k; $i++)
        echo $arr[$i], " ";
}
 
// Driver Code
$n = 10;
$k = 3;
candies($n, $k);
 
// This code is contributed by Ryuga
?>


Javascript




<script>
 
// JavaScript  code for better approach
// to distribute candies
 
    // Function to find out the number of
    // candies every person received
    function candies(n , k) {
 
        // Count number of complete turns
        var count = 0;
 
        // Get the last term
        var ind = 1;
 
        // Stores the number of candies
        var arr = Array(k);
 
        for (i = 0; i < k; i++)
            arr[i] = 0;
 
        while (n > 0) {
 
            // Last term of last and
            // current series
            var f1 = (ind - 1) * k;
            var f2 = ind * k;
 
            // Sum of current and last series
            var sum1 = (f1 * (f1 + 1)) / 2;
            var sum2 = (f2 * (f2 + 1)) / 2;
 
            // Sum of current series only
            var res = sum2 - sum1;
 
            // If sum of current is less than N
            if (res <= n) {
                count++;
                n -= res;
                ind++;
            } else // Individually distribute
            {
                var i = 0;
 
                // First term
                var term = ((ind - 1) * k) + 1;
 
                // Distribute candies till there
                while (n > 0) {
 
                    // Candies available
                    if (term <= n) {
                        arr[i++] = term;
                        n -= term;
                        term++;
                    } else // Not available
                    {
                        arr[i++] = n;
                        n = 0;
                    }
                }
            }
        }
 
        // Count the total candies
        for (i = 0; i < k; i++)
            arr[i] += (count * (i + 1)) +
            (k * (count * (count - 1)) / 2);
 
        // Print the total candies
        for (i = 0; i < k; i++)
            document.write(arr[i] + " ");
    }
 
    // Driver Code
     
        var n = 10, k = 3;
        candies(n, k);
 
// This code contributed by Rajput-Ji
 
</script>


Output: 

5 2 3

 

Time complexity: O(Number of turns + K)
Auxiliary Space: O(k)
An efficient approach is to find the largest number(say MAXI) whose sum upto natural numbers is less than N using Binary search. Since the last number will always be a multiple of K, we get the last number of complete turns. Subtract the summation till then from N. Distribute the remaining candies by traversing in the array. 
Below is the implementation of the above approach: 

C++




// C++ implementation of the above approach
#include <bits/stdc++.h>
using namespace std;
 
// Function to find out the number of
// candies every person received
void candies(int n, int k)
{
 
    // Count number of complete turns
    int count = 0;
 
    // Get the last term
    int ind = 1;
 
    // Stores the number of candies
    int arr[k];
 
    memset(arr, 0, sizeof(arr));
 
    int low = 0, high = n;
 
    // Do a binary search to find the number whose
    // sum is less than N.
    while (low <= high) {
 
        // Get mide
        int mid = (low + high) >> 1;
        int sum = (mid * (mid + 1)) >> 1;
 
        // If sum is below N
        if (sum <= n) {
 
            // Find number of complete turns
            count = mid / k;
 
            // Right halve
            low = mid + 1;
        }
        else {
 
            // Left halve
            high = mid - 1;
        }
    }
 
    // Last term of last complete series
    int last = (count * k);
 
    // Subtract the sum till
    n -= (last * (last + 1)) / 2;
 
    int i = 0;
 
    // First term of incomplete series
    int term = (count * k) + 1;
 
    while (n) {
        if (term <= n) {
            arr[i++] = term;
            n -= term;
            term++;
        }
        else {
            arr[i] += n;
            n = 0;
        }
    }
 
    // Count the total candies
    for (int i = 0; i < k; i++)
        arr[i] += (count * (i + 1))
               + (k * (count * (count - 1)) / 2);
 
    // Print the total candies
    for (int i = 0; i < k; i++)
        cout << arr[i] << " ";
}
 
// Driver Code
int main()
{
    int n = 7, k = 4;
    candies(n, k);
 
    return 0;
}


Java




// Java implementation of the above approach
 
class GFG
{
    // Function to find out the number of
    // candies every person received
    static void candies(int n, int k)
    {
     
        // Count number of complete turns
        int count = 0;
     
        // Get the last term
        int ind = 1;
     
        // Stores the number of candies
        int []arr=new int[k];
      
        for(int i=0;i<k;i++)
         arr[i]=0;
      
     
        int low = 0, high = n;
     
        // Do a binary search to find the number whose
        // sum is less than N.
        while (low <= high) {
     
            // Get mide
            int mid = (low + high) >> 1;
            int sum = (mid * (mid + 1)) >> 1;
     
            // If sum is below N
            if (sum <= n) {
     
                // Find number of complete turns
                count = mid / k;
     
                // Right halve
                low = mid + 1;
            }
            else {
     
                // Left halve
                high = mid - 1;
            }
        }
     
        // Last term of last complete series
        int last = (count * k);
     
        // Subtract the sum till
        n -= (last * (last + 1)) / 2;
     
        int j = 0;
     
        // First term of incomplete series
        int term = (count * k) + 1;
     
        while (n > 0) {
            if (term <= n) {
                arr[j++] = term;
                n -= term;
                term++;
            }
            else {
                arr[j] += n;
                n = 0;
            }
        }
     
        // Count the total candies
        for (int i = 0; i < k; i++)
            arr[i] += (count * (i + 1))
                + (k * (count * (count - 1)) / 2);
     
        // Print the total candies
        for (int i = 0; i < k; i++)
            System.out.print( arr[i] + " " );
    }
     
    // Driver Code
    public static void main(String []args)
    {
        int n = 7, k = 4;
        candies(n, k);
     
         
    }
 
}
 
// This code is contributed by ihritik


Python3




# Python3 implementation of the above approach
 
# Function to find out the number of
# candies every person received
def candies(n, k):
 
    # Count number of complete turns
    count = 0;
 
    # Get the last term
    ind = 1;
 
    # Stores the number of candies
    arr = [0] * k;
 
    low = 0;
    high = n;
 
    # Do a binary search to find the
    # number whose sum is less than N.
    while (low <= high):
 
        # Get mide
        mid = (low + high) >> 1;
        sum = (mid * (mid + 1)) >> 1;
 
        # If sum is below N
        if (sum <= n):
 
            # Find number of complete turns
            count = int(mid / k);
 
            # Right halve
            low = mid + 1;
        else:
 
            # Left halve
            high = mid - 1;
 
    # Last term of last complete series
    last = (count * k);
 
    # Subtract the sum till
    n -= int((last * (last + 1)) / 2);
 
    i = 0;
 
    # First term of incomplete series
    term = (count * k) + 1;
 
    while (n):
        if (term <= n):
            arr[i] = term;
            i += 1;
            n -= term;
            term += 1;
        else:
            arr[i] += n;
            n = 0;
 
    # Count the total candies
    for i in range(k):
        arr[i] += ((count * (i + 1)) +
                int(k * (count * (count - 1)) / 2));
 
    # Print the total candies
    for i in range(k):
        print(arr[i], end = " ");
 
# Driver Code
n = 7;
k = 4;
candies(n, k);
 
# This code is contributed by chandan_jnu


C#




// C# implementation of the above approach
 
using System;
class GFG
{
    // Function to find out the number of
    // candies every person received
    static void candies(int n, int k)
    {
     
        // Count number of complete turns
        int count = 0;
     
        // Get the last term
        int ind = 1;
     
        // Stores the number of candies
        int []arr=new int[k];
      
        for(int i=0;i<k;i++)
         arr[i]=0;
      
     
        int low = 0, high = n;
     
        // Do a binary search to find the number whose
        // sum is less than N.
        while (low <= high) {
     
            // Get mide
            int mid = (low + high) >> 1;
            int sum = (mid * (mid + 1)) >> 1;
     
            // If sum is below N
            if (sum <= n) {
     
                // Find number of complete turns
                count = mid / k;
     
                // Right halve
                low = mid + 1;
            }
            else {
     
                // Left halve
                high = mid - 1;
            }
        }
     
        // Last term of last complete series
        int last = (count * k);
     
        // Subtract the sum till
        n -= (last * (last + 1)) / 2;
     
        int j = 0;
     
        // First term of incomplete series
        int term = (count * k) + 1;
     
        while (n > 0) {
            if (term <= n) {
                arr[j++] = term;
                n -= term;
                term++;
            }
            else {
                arr[j] += n;
                n = 0;
            }
        }
     
        // Count the total candies
        for (int i = 0; i < k; i++)
            arr[i] += (count * (i + 1))
                + (k * (count * (count - 1)) / 2);
     
        // Print the total candies
        for (int i = 0; i < k; i++)
            Console.Write( arr[i] + " " );
    }
     
    // Driver Code
    public static void Main()
    {
        int n = 7, k = 4;
        candies(n, k);
     
         
    }
 
}
 
// This code is contributed by ihritik


PHP




<?php
// PHP implementation of the above approach
 
// Function to find out the number of
// candies every person received
function candies($n, $k)
{
 
    // Count number of complete turns
    $count = 0;
 
    // Get the last term
    $ind = 1;
 
    // Stores the number of candies
    $arr = array_fill(0, $k, 0);
 
    $low = 0;
    $high = $n;
 
    // Do a binary search to find the
    // number whose sum is less than N.
    while ($low <= $high)
    {
 
        // Get mide
        $mid = ($low + $high) >> 1;
        $sum = ($mid * ($mid + 1)) >> 1;
 
        // If sum is below N
        if ($sum <= $n)
        {
 
            // Find number of complete turns
            $count = (int)($mid / $k);
 
            // Right halve
            $low = $mid + 1;
        }
        else
        {
 
            // Left halve
            $high = $mid - 1;
        }
    }
 
    // Last term of last complete series
    $last = ($count * $k);
 
    // Subtract the sum till
    $n -= (int)(($last * ($last + 1)) / 2);
 
    $i = 0;
 
    // First term of incomplete series
    $term = ($count * $k) + 1;
 
    while ($n)
    {
        if ($term <= $n)
        {
            $arr[$i++] = $term;
            $n -= $term;
            $term++;
        }
        else
        {
            $arr[$i] += $n;
            $n = 0;
        }
    }
 
    // Count the total candies
    for ($i = 0; $i < $k; $i++)
        $arr[$i] += ($count * ($i + 1)) +
         (int)($k * ($count * ($count - 1)) / 2);
 
    // Print the total candies
    for ($i = 0; $i < $k; $i++)
        echo $arr[$i] . " ";
}
 
// Driver Code
$n = 7;
$k = 4;
candies($n, $k);
 
// This code is contributed
// by chandan_jnu
?>


Javascript




<script>
// javascript implementation of the above approach   
// Function to find out the number of
    // candies every person received
    function candies(n , k) {
 
        // Count number of complete turns
        var count = 0;
 
        // Get the last term
        var ind = 1;
 
        // Stores the number of candies
        var arr = Array(k).fill(0);
 
        for (i = 0; i < k; i++)
            arr[i] = 0;
 
        var low = 0, high = n;
 
        // Do a binary search to find the number whose
        // sum is less than N.
        while (low <= high) {
 
            // Get mide
            var mid = parseInt((low + high) /2);
            var sum = parseInt((mid * (mid + 1)) / 2);
 
            // If sum is below N
            if (sum <= n) {
 
                // Find number of complete turns
                count = parseInt(mid / k);
 
                // Right halve
                low = mid + 1;
            } else {
 
                // Left halve
                high = mid - 1;
            }
        }
 
        // Last term of last complete series
        var last = (count * k);
 
        // Subtract the sum till
        n -= (last * (last + 1)) / 2;
 
        var j = 0;
 
        // First term of incomplete series
        var term = (count * k) + 1;
 
        while (n > 0) {
            if (term <= n) {
                arr[j++] = term;
                n -= term;
                term++;
            } else {
                arr[j] += n;
                n = 0;
            }
        }
 
        // Count the total candies
        for (i = 0; i < k; i++)
            arr[i] += (count * (i + 1)) + (k * (count * (count - 1)) / 2);
 
        // Print the total candies
        for (i = 0; i < k; i++)
            document.write(arr[i] + " ");
    }
 
    // Driver Code
     
        var n = 7, k = 4;
        candies(n, k);
 
 
// This code contributed by aashish1995
</script>


Output: 

1 2 3 1

 

Time Complexity: O(log N + K)
Auxiliary Space: O(K) for given K

Distribute N candies among K people in c++:

Approach:

The distribute_candies function takes two integers as input: N, which represents the total number of candies, and K, which represents the number of people. It returns a vector of integers, where the i-th element represents the number of candies distributed to the i-th person.

The function initializes a vector result of K elements with zero candies. It then loops until all N candies have been distributed. In each iteration, it calculates the number of candies to give to the current person (candies_to_give) as the minimum of N and i+1. It then adds candies_to_give to the number of candies distributed to the i-th person in result, and subtracts candies_to_give from N. Finally, it increments i to move to the next person.

C++




#include <iostream>
#include <vector>
 
std::vector<int> distribute_candies(int N, int K) {
    std::vector<int> result(K, 0); // initialize a vector of K elements with zero candies
    int i = 0;
    while (N > 0) { // loop until we have no more candies to distribute
        int candies_to_give = std::min(N, i+1);
        result[i % K] += candies_to_give; // distribute candies to the i-th person
        N -= candies_to_give; // subtract the distributed candies from N
        i += 1; // move to the next person
    }
    return result;
}
 
int main() {
    int N = 10;
    int K = 3;
    std::vector<int> result = distribute_candies(N, K);
    for (int i = 0; i < K; i++) {
        std::cout << result[i] << " ";
    }
   
    return 0;
}


Java




import java.util.*;
 
public class DistributeCandies {
    public static List<Integer> distributeCandies(int N,
                                                  int K)
    {
        List<Integer> result
            = new ArrayList<>(Collections.nCopies(
                K, 0)); // initialize a list of K elements
                        // with zero candies
        int i = 0;
        while (N > 0) { // loop until we have no more
                        // candies to distribute
            int candiesToGive = Math.min(N, i + 1);
            result.set(
                i % K,
                result.get(i % K)
                    + candiesToGive); // distribute candies
                                      // to the i-th person
            N -= candiesToGive; // subtract the distributed
                                // candies from N
            i += 1; // move to the next person
        }
        return result;
    }
 
    public static void main(String[] args)
    {
        int N = 10;
        int K = 3;
        List<Integer> result = distributeCandies(N, K);
        for (int i = 0; i < K; i++) {
            System.out.print(result.get(i) + " ");
        }
       
    }
}


Python3




def distribute_candies(N, K):
    result = [0] * K # initialize a list of K elements with zero candies
    i = 0
    while N > 0: # loop until we have no more candies to distribute
        candies_to_give = min(N, i+1)
        result[i % K] += candies_to_give # distribute candies to the i-th person
        N -= candies_to_give # subtract the distributed candies from N
        i += 1 # move to the next person
    return result
 
if __name__ == '__main__':
    N = 10
    K = 3
    result = distribute_candies(N, K)
    for i in range(K):
        print(result[i], end=" ")
    # output: 3 3 4


C#




using System;
using System.Collections.Generic;
 
public class Gfg {
    public static List<int> distribute_candies(int N, int K) {
        List<int> result = new List<int>(new int[K]); // initialize a list of K elements with zero candies
        int i = 0;
        while (N > 0) { // loop until we have no more candies to distribute
            int candies_to_give = Math.Min(N, i+1);
            result[i % K] += candies_to_give; // distribute candies to the i-th person
            N -= candies_to_give; // subtract the distributed candies from N
            i += 1; // move to the next person
        }
        return result;
    }
     
    public static void Main() {
        int N = 10;
        int K = 3;
        List<int> result = distribute_candies(N, K);
        for (int i = 0; i < K; i++) {
            Console.Write(result[i] + " ");
        }
        // output: 3 3 4
    }
}


Javascript




// JavaScript equivalent
function distribute_candies(N, K) {
    let result = Array(K).fill(0); // initialize a list of K elements with zero candies
    let i = 0;
    while (N > 0) { // loop until we have no more candies to distribute
        let candies_to_give = Math.min(N, i+1);
        result[i % K] += candies_to_give; // distribute candies to the i-th person
        N -= candies_to_give; // subtract the distributed candies from N
        i += 1; // move to the next person
    }
    return result;
}
 
let N = 10;
let K = 3;
let result = distribute_candies(N, K); temp="";
for (let i = 0; i < K; i++) {
    temp = temp+result[i]+" ";
} console.log(temp);


Output

5 2 3 

The time complexity of this algorithm is O(N), because we need to distribute each of the N candies.
The auxiliary space of this algorithm is O(K), because we use a vector of K elements to store the candies distributed to each person.

Feeling lost in the world of random DSA topics, wasting time without progress? It’s time for a change! Join our DSA course, where we’ll guide you on an exciting journey to master DSA efficiently and on schedule.
Ready to dive in? Explore our Free Demo Content and join our DSA course, trusted by over 100,000 neveropen!

RELATED ARTICLES

Most Popular

Recent Comments