Given a directed graph, the task is to count the in and out degree of each vertex of the graph.
Examples:
Input:
Output: Vertex In Out 0 1 2 1 2 1 2 2 3 3 2 2 4 2 2 5 2 2 6 2 1
Approach: Traverse adjacency list for every vertex, if size of the adjacency list of vertex i is x then the out degree for i = x and increment the in degree of every vertex that has an incoming edge from i. Repeat the steps for every vertex and print the in and out degrees for all the vertices in the end.
Below is the implementation of the above approach:
C++
// C++ program to find the in and out degrees // of the vertices of the given graph #include <bits/stdc++.h> using namespace std; // Function to print the in and out degrees // of all the vertices of the given graph void findInOutDegree(vector<vector< int >> adjlist, int n) { vector< int > iN(n,0); vector< int > ouT(n,0); for ( int i=0;i<n;i++) { // Out degree for ith vertex will be the count // of direct paths from i to other vertices ouT[i] = adjlist[i].size(); // Every vertex that has an incoming // edge from i for ( int j=0;j<adjlist[i].size();j++) iN[adjlist[i][j]]++; } cout << "Vertex\t\tIn\t\tOut" << endl; for ( int k = 0; k < n; k++) { cout << k << "\t\t" << iN[k] << "\t\t" << ouT[k] << endl; } } // Driver code int main() { // Adjacency list representation of the graph vector<vector< int >> adjlist; // Vertices 1 and 2 have an incoming edge // from vertex 0 vector< int > tmp; tmp.push_back(1); tmp.push_back(2); adjlist.push_back(tmp); tmp.clear(); // Vertex 3 has an incoming edge // from vertex 1 tmp.push_back(3); adjlist.push_back(tmp); tmp.clear(); // Vertices 0, 5 and 6 have an incoming // edge from vertex 2 tmp.push_back(0); tmp.push_back(5); tmp.push_back(6); adjlist.push_back(tmp); tmp.clear(); // Vertices 1 and 4 have an incoming // edge from vertex 3 tmp.push_back(1); tmp.push_back(4); adjlist.push_back(tmp); tmp.clear(); // Vertices 2 and 3 have an incoming // edge from vertex 4 tmp.push_back(2); tmp.push_back(3); adjlist.push_back(tmp); tmp.clear(); // Vertices 4 and 6 have an incoming // edge from vertex 5 tmp.push_back(4); tmp.push_back(6); adjlist.push_back(tmp); tmp.clear(); // Vertex 5 has an incoming // edge from vertex 6 tmp.push_back(5); adjlist.push_back(tmp); tmp.clear(); int n = adjlist.size(); findInOutDegree(adjlist, n); } // This code is contributed by saurabhgpta248 |
Java
// Java program to find the in and out degrees // of the vertices of the given graph import java.util.*; class GFG { // Function to print the in and out degrees // of all the vertices of the given graph static void findInOutDegree(List<List<Integer> > adjList, int n) { int in[] = new int [n]; int out[] = new int [n]; for ( int i = 0 ; i < adjList.size(); i++) { List<Integer> list = adjList.get(i); // Out degree for ith vertex will be the count // of direct paths from i to other vertices out[i] = list.size(); for ( int j = 0 ; j < list.size(); j++) // Every vertex that has an incoming // edge from i in[list.get(j)]++; } System.out.println( "Vertex\tIn\tOut" ); for ( int k = 0 ; k < n; k++) { System.out.println(k + "\t" + in[k] + "\t" + out[k]); } } // Driver code public static void main(String args[]) { // Adjacency list representation of the graph List<List<Integer> > adjList = new ArrayList<>(); // Vertices 1 and 2 have an incoming edge // from vertex 0 List<Integer> tmp = new ArrayList<Integer>(Arrays.asList( 1 , 2 )); adjList.add(tmp); // Vertex 3 has an incoming edge from vertex 1 tmp = new ArrayList<Integer>(Arrays.asList( 3 )); adjList.add(tmp); // Vertices 0, 5 and 6 have an incoming // edge from vertex 2 tmp = new ArrayList<Integer>(Arrays.asList( 0 , 5 , 6 )); adjList.add(tmp); // Vertices 1 and 4 have an incoming edge // from vertex 3 tmp = new ArrayList<Integer>(Arrays.asList( 1 , 4 )); adjList.add(tmp); // Vertices 2 and 3 have an incoming edge // from vertex 4 tmp = new ArrayList<Integer>(Arrays.asList( 2 , 3 )); adjList.add(tmp); // Vertices 4 and 6 have an incoming edge // from vertex 5 tmp = new ArrayList<Integer>(Arrays.asList( 4 , 6 )); adjList.add(tmp); // Vertex 5 has an incoming edge from vertex 6 tmp = new ArrayList<Integer>(Arrays.asList( 5 )); adjList.add(tmp); int n = adjList.size(); findInOutDegree(adjList, n); } } |
Python3
# Python3 program to find the in and out # degrees of the vertices of the given graph # Function to print the in and out degrees # of all the vertices of the given graph def findInOutDegree(adjList, n): _in = [ 0 ] * n out = [ 0 ] * n for i in range ( 0 , len (adjList)): List = adjList[i] # Out degree for ith vertex will be the count # of direct paths from i to other vertices out[i] = len ( List ) for j in range ( 0 , len ( List )): # Every vertex that has # an incoming edge from i _in[ List [j]] + = 1 print ( "Vertex\tIn\tOut" ) for k in range ( 0 , n): print ( str (k) + "\t" + str (_in[k]) + "\t" + str (out[k])) # Driver code if __name__ = = "__main__" : # Adjacency list representation of the graph adjList = [] # Vertices 1 and 2 have an incoming edge # from vertex 0 adjList.append([ 1 , 2 ]) # Vertex 3 has an incoming edge from vertex 1 adjList.append([ 3 ]) # Vertices 0, 5 and 6 have an # incoming edge from vertex 2 adjList.append([ 0 , 5 , 6 ]) # Vertices 1 and 4 have an # incoming edge from vertex 3 adjList.append([ 1 , 4 ]) # Vertices 2 and 3 have an # incoming edge from vertex 4 adjList.append([ 2 , 3 ]) # Vertices 4 and 6 have an # incoming edge from vertex 5 adjList.append([ 4 , 6 ]) # Vertex 5 has an incoming edge from vertex 6 adjList.append([ 5 ]) n = len (adjList) findInOutDegree(adjList, n) # This code is contributed by Rituraj Jain |
C#
// C# program to find the in and out degrees // of the vertices of the given graph using System; using System.Collections.Generic; class GFG { // Function to print the in and out degrees // of all the vertices of the given graph static void findInOutDegree(List<List< int >> adjList, int n) { int []iN = new int [n]; int []ouT = new int [n]; for ( int i = 0; i < adjList.Count; i++) { List< int > list = adjList[i]; // Out degree for ith vertex will be the count // of direct paths from i to other vertices ouT[i] = list.Count; for ( int j = 0; j < list.Count; j++) // Every vertex that has an incoming // edge from i iN[list[j]]++; } Console.WriteLine( "Vertex\t\tIn\t\tOut" ); for ( int k = 0; k < n; k++) { Console.WriteLine(k + "\t\t" + iN[k] + "\t\t" + ouT[k]); } } // Driver code public static void Main(String []args) { // Adjacency list representation of the graph List<List< int > > adjList = new List<List< int >>(); // Vertices 1 and 2 have an incoming edge // from vertex 0 List< int > tmp = new List< int >{1, 2}; adjList.Add(tmp); // Vertex 3 has an incoming edge from vertex 1 tmp = new List< int >{3}; adjList.Add(tmp); // Vertices 0, 5 and 6 have an incoming // edge from vertex 2 tmp = new List< int >{0, 5, 6}; adjList.Add(tmp); // Vertices 1 and 4 have an incoming edge // from vertex 3 tmp = new List< int >{1, 4}; adjList.Add(tmp); // Vertices 2 and 3 have an incoming edge // from vertex 4 tmp = new List< int >{2, 3}; adjList.Add(tmp); // Vertices 4 and 6 have an incoming edge // from vertex 5 tmp = new List< int >{4, 6}; adjList.Add(tmp); // Vertex 5 has an incoming edge from vertex 6 tmp = new List< int >{5}; adjList.Add(tmp); int n = adjList.Count; findInOutDegree(adjList, n); } } // This code is contributed by 29AjayKumar |
Javascript
// JavaScript program to find the in and out // degrees of the vertices of the given graph // Function to print the in and out degrees // of all the vertices of the given graph function findInOutDegree(adjList, n) { // Initialize arrays to store in-degree // and out-degree of all vertices let inDegree = Array(n).fill(0); let outDegree = Array(n).fill(0); // Loop through each vertex in the graph for (let i = 0; i < adjList.length; i++) { // Get the list of vertices that are //connected to the current vertex let list = adjList[i]; // Out-degree for the current vertex // will be the count of direct paths // from the current vertex to other vertices outDegree[i] = list.length; // Loop through each vertex that // is connected to the current vertex for (let j = 0; j < list.length; j++) { // Increase the in-degree for the vertex // that has an incoming edge from the current vertex inDegree[list[j]] += 1; } } // Print the in-degree and out-degree of all vertices document.write( "Vertex In Out" + "<br>" ); for (let k = 0; k < n; k++) { document.write(k + " " + inDegree[k] + " " + outDegree[k]+ "<br>" ); } } // Driver code // Adjacency list representation of the graph let adjList = []; // Vertices 1 and 2 have an incoming edge from vertex 0 adjList.push([1, 2]); // Vertex 3 has an incoming edge from vertex 1 adjList.push([3]); // Vertices 0, 5, and 6 have an incoming edge from vertex 2 adjList.push([0, 5, 6]); // Vertices 1 and 4 have an incoming edge from vertex 3 adjList.push([1, 4]); // Vertices 2 and 3 have an incoming edge from vertex 4 adjList.push([2, 3]); // Vertices 4 and 6 have an incoming edge from vertex 5 adjList.push([4, 6]); // Vertex 5 has an incoming edge from vertex 6 adjList.push([5]); // Number of vertices in the graph let n = adjList.length; // Call the findInOutDegree function to // find and print the in-degree and out-degree of all vertices findInOutDegree(adjList, n); |
Vertex In Out 0 1 2 1 2 1 2 2 3 3 2 2 4 2 2 5 2 2 6 2 1
Complexity Analysis:
- Time Complexity: O(V + E) where V and E are the numbers of vertices and edges in the graph respectively.
- Auxiliary Space: O(V + E).
Ready to dive in? Explore our Free Demo Content and join our DSA course, trusted by over 100,000 neveropen!