Given an array arr[] of size N having no duplicates and an integer K, the task is to find the Kth smallest element from the array in constant extra space and the array can’t be modified.
Examples:
Input: arr[] = {7, 10, 4, 3, 20, 15}, K = 3
Output: 7
Given array in sorted is {3, 4, 7, 10, 15, 20}
where 7 is the third smallest element.Input: arr[] = {12, 3, 5, 7, 19}, K = 2
Output: 5
Approach: First we find the min and max elements from the array. Then we set low = min, high = max and mid = (low + high) / 2.
Now, perform a modified binary search, and for each mid we count the number of elements less than mid and equal to mid. If countLess < k and countLess + countEqual ? k then mid is our answer, else we have to modify our low and high.
Below is the implementation of the above approach:
C++
// C++ implementation of the approach #include <bits/stdc++.h> using namespace std; // Function to return the kth smallest // element from the array int kthSmallest( int * arr, int k, int n) { // Minimum and maximum element from the array int low = *min_element(arr, arr + n); int high = *max_element(arr, arr + n); // Modified binary search while (low <= high) { int mid = low + (high - low) / 2; // To store the count of elements from the array // which are less than mid and // the elements which are equal to mid int countless = 0, countequal = 0; for ( int i = 0; i < n; ++i) { if (arr[i] < mid) ++countless; else if (arr[i] == mid) ++countequal; } // If mid is the kth smallest if (countless < k && (countless + countequal) >= k) { return mid; } // If the required element is less than mid else if (countless >= k) { high = mid - 1; } // If the required element is greater than mid else if (countless < k && countless + countequal < k) { low = mid + 1; } } } // Driver code int main() { int arr[] = { 7, 10, 4, 3, 20, 15 }; int n = sizeof (arr) / sizeof ( int ); int k = 3; cout << kthSmallest(arr, k, n); return 0; } |
Java
// Java implementation of the approach import java.util.*; class GFG { // Function to return the kth smallest // element from the array static int kthSmallest( int [] arr, int k, int n) { // Minimum and maximum element from the array int low = Arrays.stream(arr).min().getAsInt(); int high = Arrays.stream(arr).max().getAsInt(); // Modified binary search while (low <= high) { int mid = low + (high - low) / 2 ; // To store the count of elements from the array // which are less than mid and // the elements which are equal to mid int countless = 0 , countequal = 0 ; for ( int i = 0 ; i < n; ++i) { if (arr[i] < mid) ++countless; else if (arr[i] == mid) ++countequal; } // If mid is the kth smallest if (countless < k && (countless + countequal) >= k) { return mid; } // If the required element is less than mid else if (countless >= k) { high = mid - 1 ; } // If the required element is greater than mid else if (countless < k && countless + countequal < k) { low = mid + 1 ; } } return Integer.MIN_VALUE; } // Driver code public static void main(String[] args) { int arr[] = { 7 , 10 , 4 , 3 , 20 , 15 }; int n = arr.length; int k = 3 ; System.out.println(kthSmallest(arr, k, n)); } } // This code is contributed by 29AjayKumar |
Python3
# Python3 implementation of the approach # Function to return the kth smallest # element from the array def kthSmallest(arr, k, n) : # Minimum and maximum element from the array low = min (arr); high = max (arr); # Modified binary search while (low < = high) : mid = low + (high - low) / / 2 ; # To store the count of elements from the array # which are less than mid and # the elements which are equal to mid countless = 0 ; countequal = 0 ; for i in range (n) : if (arr[i] < mid) : countless + = 1 ; elif (arr[i] = = mid) : countequal + = 1 ; # If mid is the kth smallest if (countless < k and (countless + countequal) > = k) : return mid; # If the required element is less than mid elif (countless > = k) : high = mid - 1 ; # If the required element is greater than mid elif (countless < k and countless + countequal < k) : low = mid + 1 ; # Driver code if __name__ = = "__main__" : arr = [ 7 , 10 , 4 , 3 , 20 , 15 ]; n = len (arr); k = 3 ; print (kthSmallest(arr, k, n)); # This code is contributed by AnkitRai01 |
C#
// C# implementation of the approach using System; using System.Linq; class GFG { // Function to return the kth smallest // element from the array static int kthSmallest( int [] arr, int k, int n) { // Minimum and maximum element from the array int low = arr.Min(); int high = arr.Max(); // Modified binary search while (low <= high) { int mid = low + (high - low) / 2; // To store the count of elements from the array // which are less than mid and // the elements which are equal to mid int countless = 0, countequal = 0; for ( int i = 0; i < n; ++i) { if (arr[i] < mid) ++countless; else if (arr[i] == mid) ++countequal; } // If mid is the kth smallest if (countless < k && (countless + countequal) >= k) { return mid; } // If the required element is less than mid else if (countless >= k) { high = mid - 1; } // If the required element is greater than mid else if (countless < k && countless + countequal < k) { low = mid + 1; } } return int .MinValue; } // Driver code public static void Main(String[] args) { int []arr = { 7, 10, 4, 3, 20, 15 }; int n = arr.Length; int k = 3; Console.WriteLine(kthSmallest(arr, k, n)); } } // This code is contributed by Rajput-Ji |
Javascript
<script> // JavaScript implementation of the approach // Function to return the kth smallest // element from the array function kthSmallest(arr, k, n) { let temp = [...arr]; // Minimum and maximum element from the array let low = temp.sort((a, b) => a - b)[0]; let high = temp[temp.length - 1]; // Modified binary search while (low <= high) { let mid = low + Math.floor((high - low) / 2); // To store the count of elements from the array // which are less than mid and // the elements which are equal to mid let countless = 0, countequal = 0; for (let i = 0; i < n; ++i) { if (arr[i] < mid) ++countless; else if (arr[i] == mid) ++countequal; } // If mid is the kth smallest if (countless < k && (countless + countequal) >= k) { return mid; } // If the required element is less than mid else if (countless >= k) { high = mid - 1; } // If the required element is greater than mid else if (countless < k && countless + countequal < k) { low = mid + 1; } } } // Driver code let arr = [7, 10, 4, 3, 20, 15]; let n = arr.length; let k = 3; document.write(kthSmallest(arr, k, n)); // This code is contributed by gfgking </script> |
7
Time Complexity: O(N log(Max – Min)) where Max and Min are the maximum and minimum elements from the array respectively and N is the size of the array.
Auxiliary Space: O(1), no extra space is required, so it is a constant.
Ready to dive in? Explore our Free Demo Content and join our DSA course, trusted by over 100,000 neveropen!