Friday, January 10, 2025
Google search engine
HomeData Modelling & AIMax count of unique ratio/fraction pairs in given arrays

Max count of unique ratio/fraction pairs in given arrays

Given two arrays num[] and den[] which denotes the numerator and denominator respectively, the task is to find the count of the unique fractions.

Examples: 

Input: num[] = {1, 2, 3, 4, 5}, den[] = {2, 4, 6, 1, 11} 
Output:
Explanation: 
Simplest forms of the fractions 
Frac[0] => \frac{1}{2}
Frac[1] =>\frac{2}{4} = \frac{1}{2}
Frac[2] =>\frac{3}{6} = \frac{1}{2}
Frac[3] =>\frac{4}{1}
Frac[4] =>\frac{5}{11}

Count of Unique Fractions => 3

Input: num[] = {10, 20, 30, 50}, den[] = {10, 10, 10, 10} 
Output:
Explanation: 
Simplest forms of the fractions 
Frac[0] =>\frac{10}{10}
Frac[1] =>\frac{20}{10}
Frac[2] =>\frac{30}{10}
Frac[3] =>\frac{50}{10}

Count of Unique Fractions => 4

Approach: The idea is to use hash-map to find the unique fractions. To store the fractions such that the duplicates are not there, we convert each fraction to its lowest form

Below is the implementation of the above approach: 

C++




// C++ implementation to find
// fractions in its lowest form
 
#include <bits/stdc++.h>
 
using namespace std;
 
// Recursive function to
// find gcd of a and b
int gcd(int a, int b)
{
    if (b == 0)
        return a;
    return gcd(b, a % b);
}
 
// Function to count the unique
// fractions in the given array
int countUniqueFractions(int num[],
                int den[], int N){
     
    // Hash-map to store the fractions
    // in its lowest form
    map<pair<int, int>, int> mp;
     
    // Loop to iterate over the
    // fractions and store is lowest
    // form in the hash-map
    for (int i = 0; i < N; i++) {
         
         
        // for the fractions with numerator as 0,
        // the fractions 0/2,0/3,0/x should be counted as similar
        if(num[i] == 0)
            mp[make_pair(0, 0)] += 1;
        else
        {
            int number, denom;
         
            // To find the Lowest form
            number = num[i] / gcd(num[i], den[i]);
            denom = den[i] / gcd(num[i], den[i]);
         
            // the fractions -1/2 and 1/-2 should be considered similar
            if(denom < 0) number *= -1;
         
            mp[make_pair(number, denom)] += 1;
        }
    }
     
    return mp.size();
}
 
// Driver code
int main()
{
    int N = 6;
     
    // Numerator Array
    int num[] = { 1, 40, 20, 5, 6, 7 };
     
    // Denominator Array
    int den[] = { 10, 40, 2, 5, 12, 14 };
     
    cout << countUniqueFractions(num, den, N);
     
    return 0;
}


Java




// Java implementation to find 
// fractions in its lowest form
import java.lang.*;
import java.util.*;
 
class GFG{
     
static class pair
{
    int x, y;
    pair(int x,int y)
    {
        this.x = x;
        this.y = y;
    }
 
    @Override
    public int hashCode()
    {
        return this.x;
    }
     
    @Override
    public boolean equals(Object obj)
    {
         
        // If both the object references are
        // referring to the same object.
        if(this == obj)
        return true;
         
        // It checks if the argument is of the
        // type pair by comparing the classes
        // of the passed argument and this object.
        // if(!(obj instanceof pair)) return
        // false; ---> avoid.
        if(obj == null ||
           obj.getClass() !=
          this.getClass())
            return false;
         
        // Type casting of the argument.
        pair geek = (pair) obj;
         
        // comparing the state of argument with
        // the state of 'this' Object.
        return (geek.x == this.x &&
                geek.y == this.y);
    }
}
 
// Recursive function to
// find gcd of a and b
static int gcd(int a, int b)
{
    if (b == 0)
        return a;
         
    return gcd(b, a % b);
}
 
// Function to count the unique
// fractions in the given array
static int countUniqueFractions(int num[],
                                int den[], int N)
{
     
    // Hash-map to store the fractions
    // in its lowest form
    Map<pair, Integer> mp = new HashMap<>();
     
    // Loop to iterate over the
    // fractions and store is lowest
    // form in the hash-map
     for(int i = 0; i < N; i++)
    {
          // for the fractions with numerator as 0,
        // the fractions 0/2,0/3,0/x should be counted as similar
        if(num[i] == 0)
        {
            pair tmp = new pair(0, 0);
              mp.put(tmp, 1);
        }
       
          else
        {
              // To find the Lowest form
            int number = num[i] / gcd(num[i], den[i]);
            int denom = den[i] / gcd(num[i], den[i]);
           
              // the fractions -1/2 and 1/-2 should be considered similar
              if(denom < 0) number *= -1;
           
            pair tmp = new pair(number, denom);
            mp.put(tmp, 1);
        }
    }
    return mp.size();
}
 
// Driver Code
public static void main (String[] args)
{
    int N = 6;
     
    // Numerator Array
    int num[] = { 1, 40, 20, 5, 6, 7 };
     
    // Denominator Array
    int den[] = { 10, 40, 2, 5, 12, 14 };
     
    System.out.print(countUniqueFractions(num, den, N));
}
}
 
// This code is contributed by offbeat


Python3




from fractions import Fraction
from collections import defaultdict
 
# Recursive function to find gcd of a and b
def gcd(a, b):
    if b == 0:
        return a
    return gcd(b, a % b)
 
# Function to count the unique fractions in the given array
def countUniqueFractions(num, den, N):
    # Dictionary to store the fractions in its lowest form
    mp = defaultdict(int)
     
    # Loop to iterate over the fractions and store its lowest form in the dictionary
    for i in range(N):
        # for the fractions with numerator as 0,
        # the fractions 0/2, 0/3, 0/x should be counted as similar
        if num[i] == 0:
            mp[Fraction(0, 1)] += 1
        else:
            number = num[i] // gcd(num[i], den[i])
            denom = den[i] // gcd(num[i], den[i])
             
            # the fractions -1/2 and 1/-2 should be considered similar
            if denom < 0:
                number *= -1
             
            mp[Fraction(number, denom)] += 1
     
    return len(mp)
 
# Driver code
if __name__ == '__main__':
    N = 6
     
    # Numerator Array
    num = [1, 40, 20, 5, 6, 7]
     
    # Denominator Array
    den = [10, 40, 2, 5, 12, 14]
     
    print(countUniqueFractions(num, den, N))


C#




// C# implementation to find
// fractions in its lowest form
using System;
using System.Collections.Generic;
 
class GFG
{
    // Recursive function to find the gcd of a and b
    static int Gcd(int a, int b)
    {
        if (b == 0)
            return a;
        return Gcd(b, a % b);
    }
 
    // Function to count the unique fractions in the given arrays
    static int CountUniqueFractions(int[] num, int[] den, int N)
    {
        // Dictionary to store the fractions in their lowest form
        Dictionary<Tuple<int, int>, int> mp = new Dictionary<Tuple<int, int>, int>();
 
        // Loop to iterate over the fractions and store their lowest
      // form in the dictionary
        for (int i = 0; i < N; i++)
        {
            // For fractions with numerator as 0, the fractions
          // 0/2, 0/3, 0/x should be counted as similar
            if (num[i] == 0)
            {
                var key = Tuple.Create(0, 0);
                if (mp.ContainsKey(key))
                    mp[key] += 1;
                else
                    mp[key] = 1;
            }
            else
            {
                int number, denom;
 
                // Find the lowest form by dividing the numerator
              // and denominator by their GCD
                number = num[i] / Gcd(num[i], den[i]);
                denom = den[i] / Gcd(num[i], den[i]);
 
                // Fractions like -1/2 and 1/-2 should be considered
              // similar
                if (denom < 0)
                    number *= -1;
 
                var key = Tuple.Create(number, denom);
                if (mp.ContainsKey(key))
                    mp[key] += 1;
                else
                    mp[key] = 1;
            }
        }
 
        return mp.Count;
    }
 
    // Driver code
    static void Main(string[] args)
    {
        int N = 6;
 
        // Numerator Array
        int[] num = { 1, 40, 20, 5, 6, 7 };
 
        // Denominator Array
        int[] den = { 10, 40, 2, 5, 12, 14 };
 
        Console.WriteLine(CountUniqueFractions(num, den, N));
    }
}


Javascript




// JavaScript implementation to find
// fractions in their lowest form
 
// Recursive function to find gcd of a and b
function gcd(a, b) {
    if (b === 0) {
        return a;
    }
    return gcd(b, a % b);
}
 
// Function to count the unique
// fractions in the given arrays
function countUniqueFractions(num, den) {
    // Object to store the fractions
    // in their lowest form
    const mp = {};
 
    // Loop to iterate over the
    // fractions and store their lowest
    // form in the object
    for (let i = 0; i < num.length; i++) {
        // For the fractions with numerator as 0,
        // the fractions 0/2, 0/3, 0/x should be counted as similar
        if (num[i] === 0) {
            mp[`${0}/${0}`] = (mp[`${0}/${0}`] || 0) + 1;
        } else {
            let number, denom;
 
            // To find the lowest form
            number = num[i] / gcd(num[i], den[i]);
            denom = den[i] / gcd(num[i], den[i]);
 
            // The fractions -1/2 and 1/-2 should be considered similar
            if (denom < 0) {
                number *= -1;
            }
 
            mp[`${number}/${denom}`] = (mp[`${number}/${denom}`] || 0) + 1;
        }
    }
 
    return Object.keys(mp).length;
}
 
// Driver code
 
    const num = [1, 40, 20, 5, 6, 7];
    const den = [10, 40, 2, 5, 12, 14];
    const N = num.length;
 
    console.log(countUniqueFractions(num, den, N));


Output

4






Time Complexity: O(N*log(MAX)), where N is the size of the array and MAX is the maximum number in the array num and den.
Auxiliary Space: O(N + log(MAX))

Feeling lost in the world of random DSA topics, wasting time without progress? It’s time for a change! Join our DSA course, where we’ll guide you on an exciting journey to master DSA efficiently and on schedule.
Ready to dive in? Explore our Free Demo Content and join our DSA course, trusted by over 100,000 neveropen!

RELATED ARTICLES

Most Popular

Recent Comments