Thursday, January 16, 2025
Google search engine
HomeData Modelling & AIDistinct palindromic sub-strings of the given string using Dynamic Programming

Distinct palindromic sub-strings of the given string using Dynamic Programming

Given a string str of lowercase alphabets, the task is to find all distinct palindromic sub-strings of the given string.

Examples: 

Input: str = “abaaa” 
Output:
Palindromic sub-strings are “a”, “aa”, “aaa”, “aba” and “b”

Input: str = “abcd” 
Output:
 

Approach: The solution to this problem has been discussed here using Manacher’s algorithm. However we can also solve it using dynamic programming
Create an array dp[][] where dp[i][j] is set to 1 if str[i…j] is a palindrome else 0. After the array has been generated, store all the palindromic sub-strings in a map in order to get the count of distinct sub-strings.

Below is the implementation of the above approach:  

C++




// C++ implementation of the approach
#include <bits/stdc++.h>
using namespace std;
 
// Function to return the count
// of distinct palindromic sub-strings
// of the given string s
int palindromeSubStrs(string s)
{
 
    // To store the positions of
    // palindromic sub-strings
    int dp[s.size()][s.size()];
    int st, end, i, j, len;
 
    // Map to store the sub-strings
    map<string, bool> m;
    for (i = 0; i < s.size(); i++) {
 
        // Sub-strings of length 1 are palindromes
        dp[i][i] = 1;
 
        // Store continuous palindromic sub-strings
        m[string(s.begin() + i, s.begin() + i + 1)] = 1;
    }
 
    // Store palindromes of size 2
    for (i = 0; i < s.size() - 1; i++) {
        if (s[i] == s[i + 1]) {
            dp[i][i + 1] = 1;
            m[string(s.begin() + i, s.begin() + i + 2)] = 1;
        }
 
        // If str[i...(i+1)] is not a palindromic
        // then set dp[i][i + 1] = 0
        else {
            dp[i][i + 1] = 0;
        }
    }
 
    // Find palindromic sub-strings of length>=3
    for (len = 3; len <= s.size(); len++) {
        for (st = 0; st <= s.size() - len; st++) {
 
            // End of palindromic substring
            end = st + len - 1;
 
            // If s[start] == s[end] and
            // dp[start+1][end-1] is already palindrome
            // then s[start....end] is also a palindrome
            if (s[st] == s[end] && dp[st + 1][end - 1]) {
 
                // Set dp[start][end] = 1
                dp[st][end] = 1;
                m[string(s.begin() + st, s.begin() + end + 1)] = 1;
            }
 
            // Not a palindrome
            else
                dp[st][end] = 0;
        }
    }
 
    // Return the count of distinct palindromes
    return m.size();
}
 
// Driver code
int main()
{
    string s = "abaaa";
    cout << palindromeSubStrs(s);
 
    return 0;
}


Java




// Java implementation of the approach
import java.util.HashMap;
 
class GFG
{
 
    // Function to return the count
    // of distinct palindromic sub-strings
    // of the given string s
    static int palindromeSubStrs(String s)
    {
 
        // To store the positions of
        // palindromic sub-strings
        int[][] dp = new int[s.length()][s.length()];
        int st, end, i, len;
 
        // Map to store the sub-strings
        HashMap<String,
                Boolean> m = new HashMap<>();
 
        for (i = 0; i < s.length(); i++)
        {
 
            // Sub-strings of length 1 are palindromes
            dp[i][i] = 1;
 
            // Store continuous palindromic sub-strings
            m.put(s.substring(i, i + 1), true);
        }
 
        // Store palindromes of size 2
        for (i = 0; i < s.length() - 1; i++)
        {
            if (s.charAt(i) == s.charAt(i + 1))
            {
                dp[i][i + 1] = 1;
                m.put(s.substring(i, i + 2), true);
            }
 
            // If str[i...(i+1)] is not a palindromic
            // then set dp[i][i + 1] = 0
            else
                dp[i][i + 1] = 0;
        }
 
        // Find palindromic sub-strings of length>=3
        for (len = 3; len <= s.length(); len++)
        {
            for (st = 0; st <= s.length() - len; st++)
            {
 
                // End of palindromic substring
                end = st + len - 1;
 
                // If s[start] == s[end] and
                // dp[start+1][end-1] is already palindrome
                // then s[start....end] is also a palindrome
                if (s.charAt(st) == s.charAt(end) &&
                    dp[st + 1][end - 1] == 1)
                {
 
                    // Set dp[start][end] = 1
                    dp[st][end] = 1;
                    m.put(s.substring(st, end + 1), true);
                }
 
                // Not a palindrome
                else
                    dp[st][end] = 0;
            }
        }
 
        // Return the count of distinct palindromes
        return m.size();
    }
 
    // Driver Code
    public static void main(String[] args)
    {
        String s = "abaaa";
        System.out.println(palindromeSubStrs(s));
    }
}
 
// This code is contributed by
// sanjeev2552


Python3




# Python3 implementation of the approach
 
# import numpy lib as np
import numpy as np;
 
# Function to return the count
# of distinct palindromic sub-strings
# of the given string s
def palindromeSubStrs(s) :
 
    # To store the positions of
    # palindromic sub-strings
    dp = np.zeros((len(s),len(s)));
     
    # Map to store the sub-strings
    m = {};
     
    for i in range(len(s)) :
 
        # Sub-strings of length 1 are palindromes
        dp[i][i] = 1;
 
        # Store continuous palindromic sub-strings
        m[s[i: i + 1]] = 1;
     
 
    # Store palindromes of size 2
    for i in range(len(s)- 1) :
        if (s[i] == s[i + 1]) :
            dp[i][i + 1] = 1;
            m[ s[i : i + 2]] = 1;
          
 
        # If str[i...(i+1)] is not a palindromic
        # then set dp[i][i + 1] = 0
        else :
            dp[i][i + 1] = 0;
 
    # Find palindromic sub-strings of length>=3
    for length in range(3,len(s) + 1) :
        for st in range(len(s) - length + 1) :
 
            # End of palindromic substring
            end = st + length - 1;
 
            # If s[start] == s[end] and
            # dp[start+1][end-1] is already palindrome
            # then s[start....end] is also a palindrome
            if (s[st] == s[end] and dp[st + 1][end - 1]) :
 
                # Set dp[start][end] = 1
                dp[st][end] = 1;
                m[s[st : end + 1]] = 1;
 
            # Not a palindrome
            else :
                dp[st][end] = 0;
 
    # Return the count of distinct palindromes
    return len(m);
 
 
# Driver code
if __name__ == "__main__" :
 
    s = "abaaa";
    print(palindromeSubStrs(s));
 
# This code is contributed by AnkitRai01


C#




// C# implementation of the approach
using System;
using System.Collections.Generic;
 
class GFG
{
 
    // Function to return the count
    // of distinct palindromic sub-strings
    // of the given string s
    static int palindromeSubStrs(String s)
    {
 
        // To store the positions of
        // palindromic sub-strings
        int[,] dp = new int[s.Length, s.Length];
        int st, end, i, len;
 
        // Map to store the sub-strings
        Dictionary<String,
                Boolean> m = new Dictionary<String,
                Boolean>();
 
        for (i = 0; i < s.Length; i++)
        {
 
            // Sub-strings of length 1 are palindromes
            dp[i,i] = 1;
 
            // Store continuous palindromic sub-strings
            if(!m.ContainsKey(s.Substring(i, 1)))
                m.Add(s.Substring(i, 1), true);
        }
 
        // Store palindromes of size 2
        for (i = 0; i < s.Length - 1; i++)
        {
            if (s[i] == s[i + 1])
            {
                dp[i, i + 1] = 1;
                if(!m.ContainsKey(s.Substring(i, 2)))
                    m.Add(s.Substring(i, 2), true);
            }
 
            // If str[i...(i+1)] is not a palindromic
            // then set dp[i,i + 1] = 0
            else
                dp[i, i + 1] = 0;
        }
 
        // Find palindromic sub-strings of length>=3
        for (len = 3; len <= s.Length; len++)
        {
            for (st = 0; st <= s.Length - len; st++)
            {
 
                // End of palindromic substring
                end = st + len - 1;
 
                // If s[start] == s[end] and
                // dp[start+1,end-1] is already palindrome
                // then s[start....end] is also a palindrome
                if (s[st] == s[end] &&
                    dp[st + 1, end - 1] == 1)
                {
 
                    // Set dp[start,end] = 1
                    dp[st, end] = 1;
                    m.Add(s.Substring(st, end + 1-st), true);
                }
 
                // Not a palindrome
                else
                    dp[st, end] = 0;
            }
        }
 
        // Return the count of distinct palindromes
        return m.Count;
    }
 
    // Driver Code
    public static void Main(String[] args)
    {
        String s = "abaaa";
        Console.WriteLine(palindromeSubStrs(s));
    }
}
 
// This code is contributed by PrinciRaj1992


Javascript




<script>
 
// Javascript implementation of the approach
 
// Function to return the count
// of distinct palindromic sub-strings
// of the given string s
function palindromeSubStrs(s)
{
     
    // To store the positions of
    // palindromic sub-strings
    let dp = new Array(s.length);
    for(let i = 0; i < dp.length; i++)
    {
        dp[i] = new Array(2);
    }
             
    for(let i = 0; i < dp.length; i++)
    {
        for(let j = 0; j < dp.length; j++)
        {
            dp[i][j] = 0;
        }
    }
    let st, end, i, len;
 
    // Map to store the sub-strings
    let m = new Map();
 
    for(i = 0; i < s.length; i++)
    {
         
        // Sub-strings of length 1 are palindromes
        dp[i][i] = 1;
 
        // Store continuous palindromic sub-strings
        m.set(s.substr(i, i + 1), true);
    }
 
    // Store palindromes of size 2
    for(i = 0; i < s.length - 1; i++)
    {
        if (s[i] == s[i + 1])
        {
            dp[i][i + 1] = 1;
            m.set(s.substr(i, i + 2), true);
        }
 
        // If str[i...(i+1)] is not a palindromic
        // then set dp[i][i + 1] = 0
        else
            dp[i][i + 1] = 0;
    }
 
    // Find palindromic sub-strings of length>=3
    for(len = 3; len <= s.length; len++)
    {
        for(st = 0; st <= s.length - len; st++)
        {
             
            // End of palindromic substring
            end = st + len - 1;
 
            // If s[start] == s[end] and
            // dp[start+1][end-1] is already palindrome
            // then s[start....end] is also a palindrome
            if (s[st] == s[end] &&
                dp[st + 1][end - 1] == 1)
            {
 
                // Set dp[start][end] = 1
                dp[st][end] = 1;
                m.set(s.substr(st, end + 1), true);
            }
 
            // Not a palindrome
            else
                dp[st][end] = 0;
        }
    }
 
    // Return the count of distinct palindromes
    return m.size;
}
 
// Driver Code
let s = "abaaa";
document.write(palindromeSubStrs(s));
 
// This code is contributed by code_hunt
 
</script>


Output

5

Time complexity : O((n^2)logn), where n is the length of the input string. This is because we are using a nested loop to iterate over all possible substrings and check if they are palindromic.

Space complexity : O(n^2). This is because we are using a 2D array of size n x n to store the results of subproblems, and a map to store the distinct palindromic substrings.

Feeling lost in the world of random DSA topics, wasting time without progress? It’s time for a change! Join our DSA course, where we’ll guide you on an exciting journey to master DSA efficiently and on schedule.
Ready to dive in? Explore our Free Demo Content and join our DSA course, trusted by over 100,000 neveropen!

RELATED ARTICLES

Most Popular

Recent Comments