Friday, January 17, 2025
Google search engine
HomeData Modelling & AINumber of unique paths in tree such that every path has a...

Number of unique paths in tree such that every path has a value greater than K

Given a tree as a set of edges such that every node has a unique value. We are also given a value k, the task is to count the unique paths in the tree such that every path has a value greater than K. A path value is said to be > K if every edge contributing to the path is connecting two nodes both of which have values > K.

Examples: 

Input: 
 

Output:

Approach: The idea is to not form the tree with all the given edges. We only add an edge if it satisfies the condition of > k. In this case, a number of trees will be formed. While forming the different trees, we will only add the edge into the tree if both the node value are greater than K. After this, various numbers of trees will be created. Run a DFS for every node which in the end traverses the complete tree with which the node is attached and count the number of nodes in every tree. The number of unique paths for every tree which has X number of nodes is X * (X – 1) / 2

Below is the implementation of the above approach: 

C++




// C++ implementation of the approach
#include <bits/stdc++.h>
using namespace std;
 
// Function to count the number of nodes
// in the tree using DFS
int dfs(int node, int parent, list<int>* adj, bool vis[])
{
 
    // Base case
    int ans = 1;
 
    // Mark as visited
    vis[node] = true;
 
    // Traverse for all children
    for (auto it : adj[node]) {
 
        // If not equal to parent
        if (it != parent)
            ans += dfs(it, node, adj, vis);
    }
    return ans;
}
 
// Function that returns the count of
// unique paths
int countPaths(list<int>* adj, int k, int maxn)
{
 
    // An array that marks if the node
    // is visited or not
    bool vis[maxn + 1];
    int ans = 0;
 
    // Initially marked as false
    memset(vis, false, sizeof vis);
 
    // Traverse till max value of node
    for (int i = 1; i <= maxn; i++) {
 
        // If not visited
        if (!vis[i]) {
 
            // Get the number of nodes in that
            // tree
            int numNodes = dfs(i, 0, adj, vis);
 
            // Total unique paths in the current
            // tree where numNodes is the total
            // nodes in the tree
            ans += numNodes * (numNodes - 1) / 2;
        }
    }
    return ans;
}
 
// Function to add edges to tree if value
// is less than K
void addEdge(list<int>* adj, int u, int v, int k)
{
    if (u > k && v > k) {
        adj[u].push_back(v);
        adj[v].push_back(u);
    }
}
 
// Driver code
int main()
{
    int maxn = 12;
 
    list<int>* adj = new list<int>[maxn + 1];
    int k = 3;
 
    // Create undirected edges
    addEdge(adj, 2, 11, k);
    addEdge(adj, 2, 6, k);
    addEdge(adj, 5, 11, k);
    addEdge(adj, 5, 10, k);
    addEdge(adj, 5, 12, k);
    addEdge(adj, 6, 7, k);
    addEdge(adj, 6, 8, k);
 
    cout << countPaths(adj, k, maxn);
 
    return 0;
}


Java




// Java implementation of the approach
import java.util.*;
 
class GFG
{
 
    // Function to count the number of nodes
    // in the tree using DFS
    static int dfs(int node, int parent,
                Vector<Integer>[] adj, boolean[] vis)
    {
 
        // Base case
        int ans = 1;
 
        // Mark as visited
        vis[node] = true;
 
        // Traverse for all children
        for (Integer it : adj[node])
        {
 
            // If not equal to parent
            if (it != parent)
                ans += dfs(it, node, adj, vis);
        }
        return ans;
    }
 
    // Function that returns the count of
    // unique paths
    static int countPaths(Vector<Integer>[] adj,
                        int k, int maxn)
    {
 
        // An array that marks if the node
        // is visited or not
        boolean[] vis = new boolean[maxn + 1];
        int ans = 0;
 
        // Initially marked as false
        Arrays.fill(vis, false);
 
        // Traverse till max value of node
        for (int i = 1; i <= maxn; i++)
        {
 
            // If not visited
            if (!vis[i])
            {
 
                // Get the number of nodes in that
                // tree
                int numNodes = dfs(i, 0, adj, vis);
 
                // Total unique paths in the current
                // tree where numNodes is the total
                // nodes in the tree
                ans += numNodes * (numNodes - 1) / 2;
            }
        }
        return ans;
    }
 
    // Function to add edges to tree if value
    // is less than K
    static void addEdge(Vector<Integer>[] adj,
                        int u, int v, int k)
    {
        if (u > k && v > k) {
            adj[u].add(v);
            adj[v].add(u);
        }
    }
 
    // Driver Code
    public static void main(String[] args)
    {
        int maxn = 12;
 
        @SuppressWarnings("unchecked")
        Vector<Integer>[] adj = new Vector[maxn + 1];
        for (int i = 0; i < maxn + 1; i++)
        {
            adj[i] = new Vector<>();
        }
        int k = 3;
 
        // Create undirected edges
        addEdge(adj, 2, 11, k);
        addEdge(adj, 2, 6, k);
        addEdge(adj, 5, 11, k);
        addEdge(adj, 5, 10, k);
        addEdge(adj, 5, 12, k);
        addEdge(adj, 6, 7, k);
        addEdge(adj, 6, 8, k);
 
        System.out.println(countPaths(adj, k, maxn));
    }
}
 
// This code is contributed by
// sanjeev2552


Python3




# Python3 implementation of the approach
 
# Function to count the number of
# nodes in the tree using DFS
def dfs(node, parent, adj, vis):
 
    # Base case
    ans = 1
 
    # Mark as visited
    vis[node] = True
 
    # Traverse for all children
    for it in adj[node]:
 
        # If not equal to parent
        if it != parent:
            ans += dfs(it, node, adj, vis)
     
    return ans
 
# Function that returns the
# count of unique paths
def countPaths(adj, k, maxn):
 
    # An array that marks if
    # the node is visited or not
    vis = [False] * (maxn + 1)
    ans = 0
 
    # Traverse till max value of node
    for i in range(1, maxn+1):
 
        # If not visited
        if not vis[i]:
 
            # Get the number of
            # nodes in that tree
            numNodes = dfs(i, 0, adj, vis)
 
            # Total unique paths in the current
            # tree where numNodes is the total
            # nodes in the tree
            ans += numNodes * (numNodes - 1) // 2
         
    return ans
 
# Function to add edges to
# tree if value is less than K
def addEdge(adj, u, v, k):
 
    if u > k and v > k:
        adj[u].append(v)
        adj[v].append(u)
 
# Driver code
if __name__ == "__main__":
 
    maxn = 12
 
    adj = [[] for i in range(maxn + 1)]
    k = 3
 
    # Create undirected edges
    addEdge(adj, 2, 11, k)
    addEdge(adj, 2, 6, k)
    addEdge(adj, 5, 11, k)
    addEdge(adj, 5, 10, k)
    addEdge(adj, 5, 12, k)
    addEdge(adj, 6, 7, k)
    addEdge(adj, 6, 8, k)
 
    print(countPaths(adj, k, maxn))
 
# This code is contributed by Rituraj Jain


C#




// C# implementation of the approach
using System;
using System.Collections.Generic;
 
class GFG{
 
// Function to count the number of nodes
// in the tree using DFS
static int dfs(int node, int parent,
          List<int>[] adj, bool[] vis)
{
     
    // Base case
    int ans = 1;
 
    // Mark as visited
    vis[node] = true;
 
    // Traverse for all children
    foreach(int it in adj[node])
    {
         
        // If not equal to parent
        if (it != parent)
            ans += dfs(it, node, adj, vis);
    }
    return ans;
}
 
// Function that returns the count of
// unique paths
static int countPaths(List<int>[] adj,
                    int k, int maxn)
{
 
    // An array that marks if the node
    // is visited or not
    bool[] vis = new bool[maxn + 1];
    int ans = 0;
 
    // Traverse till max value of node
    for(int i = 1; i <= maxn; i++)
    {
         
        // If not visited
        if (!vis[i])
        {
             
            // Get the number of nodes in that
            // tree
            int numNodes = dfs(i, 0, adj, vis);
 
            // Total unique paths in the current
            // tree where numNodes is the total
            // nodes in the tree
            ans += numNodes * (numNodes - 1) / 2;
        }
    }
    return ans;
}
 
// Function to add edges to tree if value
// is less than K
static void addEdge(List<int>[] adj,
                    int u, int v, int k)
{
    if (u > k && v > k)
    {
        adj[u].Add(v);
        adj[v].Add(u);
    }
}
 
// Driver Code
public static void Main(String[] args)
{
    int maxn = 12;
 
    List<int>[] adj = new List<int>[maxn + 1];
    for(int i = 0; i < maxn + 1; i++)
    {
        adj[i] = new List<int>();
    }
    int k = 3;
 
    // Create undirected edges
    addEdge(adj, 2, 11, k);
    addEdge(adj, 2, 6, k);
    addEdge(adj, 5, 11, k);
    addEdge(adj, 5, 10, k);
    addEdge(adj, 5, 12, k);
    addEdge(adj, 6, 7, k);
    addEdge(adj, 6, 8, k);
 
    Console.WriteLine(countPaths(adj, k, maxn));
}
}
 
// This code is contributed by Princi Singh


Javascript




<script>
 
    // JavaScript implementation of the approach
     
    // Function to count the number of nodes
    // in the tree using DFS
    function dfs(node, parent, adj, vis)
    {
  
        // Base case
        let ans = 1;
  
        // Mark as visited
        vis[node] = true;
  
        // Traverse for all children
        for (let it = 0; it < adj[node].length; it++)
        {
  
            // If not equal to parent
            if (adj[node][it] != parent)
                ans += dfs(adj[node][it], node, adj, vis);
        }
        return ans;
    }
  
    // Function that returns the count of
    // unique paths
    function countPaths(adj, k, maxn)
    {
  
        // An array that marks if the node
        // is visited or not
        let vis = new Array(maxn + 1);
        let ans = 0;
  
        // Initially marked as false
        vis.fill(false);
  
        // Traverse till max value of node
        for (let i = 1; i <= maxn; i++)
        {
  
            // If not visited
            if (!vis[i])
            {
  
                // Get the number of nodes in that
                // tree
                let numNodes = dfs(i, 0, adj, vis);
  
                // Total unique paths in the current
                // tree where numNodes is the total
                // nodes in the tree
                ans += numNodes * (numNodes - 1) / 2;
            }
        }
        return ans;
    }
  
    // Function to add edges to tree if value
    // is less than K
    function addEdge(adj, u, v, k)
    {
        if (u > k && v > k) {
            adj[u].push(v);
            adj[v].push(u);
        }
    }
     
    let maxn = 12;
  
    let adj = new Array(maxn + 1);
    for (let i = 0; i < maxn + 1; i++)
    {
      adj[i] = [];
    }
    let k = 3;
 
    // Create undirected edges
    addEdge(adj, 2, 11, k);
    addEdge(adj, 2, 6, k);
    addEdge(adj, 5, 11, k);
    addEdge(adj, 5, 10, k);
    addEdge(adj, 5, 12, k);
    addEdge(adj, 6, 7, k);
    addEdge(adj, 6, 8, k);
 
    document.write(countPaths(adj, k, maxn));
     
</script>


Output: 

9

 

Time Complexity: O(N), as we are using recursion to traverse N times. Where N is the total number of nodes.

Auxiliary Space: O(N), as we are using extra space for the visited array. Where N is the total number of nodes.

Feeling lost in the world of random DSA topics, wasting time without progress? It’s time for a change! Join our DSA course, where we’ll guide you on an exciting journey to master DSA efficiently and on schedule.
Ready to dive in? Explore our Free Demo Content and join our DSA course, trusted by over 100,000 neveropen!

RELATED ARTICLES

Most Popular

Recent Comments