Given a “m x n” matrix, count number of paths to reach bottom right from top left with maximum k turns allowed. What is a turn? A movement is considered turn, if we were moving along row and now move along column. OR we were moving along column and now move along row.
There are two possible scenarios when a turn can occur at point (i, j): Turns Right: (i-1, j) -> (i, j) -> (i, j+1) Down Right Turns Down: (i, j-1) -> (i, j) -> (i+1, j) Right Down
Examples:
Input: m = 3, n = 3, k = 2 Output: 4
See below diagram for four paths with maximum 2 turns. Input: m = 3, n = 3, k = 1 Output: 2
This problem can be recursively computed using below recursive formula.
countPaths(i, j, k): Count of paths to reach (i,j) from (0, 0) countPathsDir(i, j, k, 0): Count of paths if we reach (i, j) along row. countPathsDir(i, j, k, 1): Count of paths if we reach (i, j) along column. The fourth parameter in countPathsDir() indicates direction. Value of countPaths() can be written as: countPaths(i, j, k) = countPathsDir(i, j, k, 0) + countPathsDir(i, j, k, 1) And value of countPathsDir() can be recursively defined as: // Base cases // If current direction is along row If (d == 0) // Count paths for two cases // 1) We reach here through previous row. // 2) We reach here through previous column, so number of // turns k reduce by 1. countPathsDir(i, j, k, d) = countPathsUtil(i, j-1, k, d) + countPathsUtil(i-1, j, k-1, !d); // If current direction is along column Else // Similar to above countPathsDir(i, j, k, d) = countPathsUtil(i-1, j, k, d) + countPathsUtil(i, j-1, k-1, !d);
We can solve this problem in Polynomial Time using Dynamic Programming. The idea is to use a 4-dimensional table dp[m][n][k][d] where m is number of rows, n is number of columns, k is number of allowed turns and d is the direction.
Below is the Dynamic Programming-based implementation.
C++14
// C++ program to count number of paths with maximum // k turns allowed #include<bits/stdc++.h> using namespace std; #define MAX 100 // table to store results of subproblems int dp[MAX][MAX][MAX][2]; // Returns count of paths to reach (i, j) from (0, 0) // using at-most k turns. d is current direction // d = 0 indicates along row, d = 1 indicates along // column. int countPathsUtil( int i, int j, int k, int d) { // If invalid row or column indexes if (i < 0 || j < 0) return 0; // If current cell is top left itself if (i == 0 && j == 0) return 1; // If 0 turns left if (k == 0) { // If direction is row, then we can reach here // only if direction is row and row is 0. if (d == 0 && i == 0) return 1; // If direction is column, then we can reach here // only if direction is column and column is 0. if (d == 1 && j == 0) return 1; return 0; } // If this subproblem is already evaluated if (dp[i][j][k][d] != -1) return dp[i][j][k][d]; // If current direction is row, then count paths for two cases // 1) We reach here through previous row. // 2) We reach here through previous column, so number of // turns k reduce by 1. if (d == 0) return dp[i][j][k][d] = countPathsUtil(i, j-1, k, d) + countPathsUtil(i-1, j, k-1, !d); // Similar to above if direction is column return dp[i][j][k][d] = countPathsUtil(i-1, j, k, d) + countPathsUtil(i, j-1, k-1, !d); } // This function mainly initializes 'dp' array as -1 and calls // countPathsUtil() int countPaths( int i, int j, int k) { // If (0, 0) is target itself if (i == 0 && j == 0) return 1; // Initialize 'dp' array memset (dp, -1, sizeof dp); // Recur for two cases: moving along row and along column return countPathsUtil(i-1, j, k, 1) + // Moving along row countPathsUtil(i, j-1, k, 0); // Moving along column } // Driver program int main() { int m = 3, n = 3, k = 2; cout << "Number of paths is " << countPaths(m-1, n-1, k) << endl; return 0; } |
Java
// Java program to count number of paths // with maximum k turns allowed import java.util.*; class GFG { static int MAX = 100 ; // table to store results of subproblems static int [][][][]dp = new int [MAX][MAX][MAX][ 2 ]; // Returns count of paths to reach (i, j) from (0, 0) // using at-most k turns. d is current direction // d = 0 indicates along row, d = 1 indicates along // column. static int countPathsUtil( int i, int j, int k, int d) { // If invalid row or column indexes if (i < 0 || j < 0 ) return 0 ; // If current cell is top left itself if (i == 0 && j == 0 ) return 1 ; // If 0 turns left if (k == 0 ) { // If direction is row, then we can reach here // only if direction is row and row is 0. if (d == 0 && i == 0 ) return 1 ; // If direction is column, then we can reach here // only if direction is column and column is 0. if (d == 1 && j == 0 ) return 1 ; return 0 ; } // If this subproblem is already evaluated if (dp[i][j][k][d] != - 1 ) return dp[i][j][k][d]; // If current direction is row, // then count paths for two cases // 1) We reach here through previous row. // 2) We reach here through previous column, // so number of turns k reduce by 1. if (d == 0 ) return dp[i][j][k][d] = countPathsUtil(i, j - 1 , k, d) + countPathsUtil(i - 1 , j, k - 1 , d == 1 ? 0 : 1 ); // Similar to above if direction is column return dp[i][j][k][d] = countPathsUtil(i - 1 , j, k, d) + countPathsUtil(i, j - 1 , k - 1 , d == 1 ? 0 : 1 ); } // This function mainly initializes 'dp' array // as -1 and calls countPathsUtil() static int countPaths( int i, int j, int k) { // If (0, 0) is target itself if (i == 0 && j == 0 ) return 1 ; // Initialize 'dp' array for ( int p = 0 ; p < MAX; p++) { for ( int q = 0 ; q < MAX; q++) { for ( int r = 0 ; r < MAX; r++) for ( int s = 0 ; s < 2 ; s++) dp[p][q][r][s] = - 1 ; } } // Recur for two cases: moving along row and along column return countPathsUtil(i - 1 , j, k, 1 ) + // Moving along row countPathsUtil(i, j - 1 , k, 0 ); // Moving along column } // Driver Code public static void main(String[] args) { int m = 3 , n = 3 , k = 2 ; System.out.println( "Number of paths is " + countPaths(m - 1 , n - 1 , k)); } } // This code is contributed by Princi Singh |
Python3
# Python3 program to count number of paths # with maximum k turns allowed MAX = 100 # table to store results of subproblems dp = [[[[ - 1 for col in range ( 2 )] for col in range ( MAX )] for row in range ( MAX )] for row in range ( MAX )] # Returns count of paths to reach # (i, j) from (0, 0) using at-most k turns. # d is current direction, d = 0 indicates # along row, d = 1 indicates along column. def countPathsUtil(i, j, k, d): # If invalid row or column indexes if (i < 0 or j < 0 ): return 0 # If current cell is top left itself if (i = = 0 and j = = 0 ): return 1 # If 0 turns left if (k = = 0 ): # If direction is row, then we can reach here # only if direction is row and row is 0. if (d = = 0 and i = = 0 ): return 1 # If direction is column, then we can reach here # only if direction is column and column is 0. if (d = = 1 and j = = 0 ): return 1 return 0 # If this subproblem is already evaluated if (dp[i][j][k][d] ! = - 1 ): return dp[i][j][k][d] # If current direction is row, # then count paths for two cases # 1) We reach here through previous row. # 2) We reach here through previous column, # so number of turns k reduce by 1. if (d = = 0 ): dp[i][j][k][d] = countPathsUtil(i, j - 1 , k, d) + \ countPathsUtil(i - 1 , j, k - 1 , not d) return dp[i][j][k][d] # Similar to above if direction is column dp[i][j][k][d] = countPathsUtil(i - 1 , j, k, d) + \ countPathsUtil(i, j - 1 , k - 1 , not d) return dp[i][j][k][d] # This function mainly initializes 'dp' array # as -1 and calls countPathsUtil() def countPaths(i, j, k): # If (0, 0) is target itself if (i = = 0 and j = = 0 ): return 1 # Recur for two cases: moving along row # and along column return countPathsUtil(i - 1 , j, k, 1 ) + \ countPathsUtil(i, j - 1 , k, 0 ) # Driver Code if __name__ = = '__main__' : m = 3 n = 3 k = 2 print ( "Number of paths is" , countPaths(m - 1 , n - 1 , k)) # This code is contributed by Ashutosh450 |
C#
// C# program to count number of paths // with maximum k turns allowed using System; class GFG { static int MAX = 100; // table to store to store results of subproblems static int [,,,]dp = new int [MAX, MAX, MAX, 2]; // Returns count of paths to reach (i, j) from (0, 0) // using at-most k turns. d is current direction // d = 0 indicates along row, d = 1 indicates along // column. static int countPathsUtil( int i, int j, int k, int d) { // If invalid row or column indexes if (i < 0 || j < 0) return 0; // If current cell is top left itself if (i == 0 && j == 0) return 1; // If 0 turns left if (k == 0) { // If direction is row, then we can reach here // only if direction is row and row is 0. if (d == 0 && i == 0) return 1; // If direction is column, then we can reach here // only if direction is column and column is 0. if (d == 1 && j == 0) return 1; return 0; } // If this subproblem is already evaluated if (dp[i, j, k, d] != -1) return dp[i, j, k, d]; // If current direction is row, // then count paths for two cases // 1) We reach here through previous row. // 2) We reach here through previous column, // so number of turns k reduce by 1. if (d == 0) return dp[i, j, k, d] = countPathsUtil(i, j - 1, k, d) + countPathsUtil(i - 1, j, k - 1, d == 1 ? 0 : 1); // Similar to above if direction is column return dp[i, j, k, d] = countPathsUtil(i - 1, j, k, d) + countPathsUtil(i, j - 1, k - 1, d == 1 ? 0 : 1); } // This function mainly initializes 'dp' array // as -1 and calls countPathsUtil() static int countPaths( int i, int j, int k) { // If (0, 0) is target itself if (i == 0 && j == 0) return 1; // Initialize 'dp' array for ( int p = 0; p < MAX; p++) { for ( int q = 0; q < MAX; q++) { for ( int r = 0; r < MAX; r++) for ( int s = 0; s < 2; s++) dp[p, q, r, s] = -1; } } // Recur for two cases: moving along row and along column return countPathsUtil(i - 1, j, k, 1) + // Moving along row countPathsUtil(i, j - 1, k, 0); // Moving along column } // Driver Code public static void Main(String[] args) { int m = 3, n = 3, k = 2; Console.WriteLine( "Number of paths is " + countPaths(m - 1, n - 1, k)); } } // This code is contributed by PrinciRaj1992 |
Javascript
<script> // JavaScript program to count number of paths // with maximum k turns allowed const MAX = 100 // table to store results of subproblems let dp = new Array(MAX) for (let i = 0; i < MAX; i++){ dp[i] = new Array(MAX) for (let j = 0; j < MAX; j++){ dp[i][j] = new Array(MAX) for (let k = 0; k < MAX; k++){ dp[i][j][k] = new Array(2).fill(-1) } } } // Returns count of paths to reach // (i, j) from (0, 0) using at-most k turns. // d is current direction, d = 0 indicates // along row, d = 1 indicates along column. function countPathsUtil(i, j, k, d){ // If invalid row or column indexes if (i < 0 || j < 0) return 0 // If current cell is top left itself if (i == 0 && j == 0) return 1 // If 0 turns left if (k == 0){ // If direction is row, then we can reach here // only if direction is row && row is 0. if (d == 0 && i == 0) return 1 // If direction is column, then we can reach here // only if direction is column && column is 0. if (d == 1 && j == 0) return 1 return 0 } // If this subproblem is already evaluated if (dp[i][j][k][d] != -1) return dp[i][j][k][d] // If current direction is row, // then count paths for two cases // 1) We reach here through previous row. // 2) We reach here through previous column, // so number of turns k reduce by 1. if (d == 0){ dp[i][j][k][d] = countPathsUtil(i, j - 1, k, d) + countPathsUtil(i - 1, j, k - 1, d^1) return dp[i][j][k][d] } // Similar to above if direction is column dp[i][j][k][d] = countPathsUtil(i - 1, j, k, d) + countPathsUtil(i, j - 1, k - 1, d^1) return dp[i][j][k][d] } // This function mainly initializes 'dp' array // as -1 && calls countPathsUtil() function countPaths(i, j, k){ // If (0, 0) is target itself if (i == 0 && j == 0) return 1 // Recur for two cases: moving along row // && along column return countPathsUtil(i - 1, j, k, 1) + countPathsUtil(i, j - 1, k, 0) } // Driver Code let m = 3 let n = 3 let k = 2 document.write( "Number of paths is" , countPaths(m - 1, n - 1, k)) // This code is contributed by shinjanpatra </script> |
Number of paths is 4
Time Complexity: O(m*n*k)
Auxiliary Space: O(MAX3)
Thanks to Gaurav Ahirwar for suggesting this solution. Please write comments if you find anything incorrect, or you want to share more information about the topic discussed above.
Ready to dive in? Explore our Free Demo Content and join our DSA course, trusted by over 100,000 neveropen!