Friday, November 1, 2024
Google search engine
HomeData Modelling & AIFind the k-th smallest divisor of a natural number N

Find the k-th smallest divisor of a natural number N

You’re given a number N and a number K. Our task is to find the kth smallest divisor of N.
Examples: 

Input : N = 12, K = 5
Output : 6
The divisors of 12 after sorting are 1, 2, 3, 4, 6 and 12. 
Where the value of 5th divisor is equal to 6.

Input : N = 16, K 2
Output : 2

Simple Approach: A simple approach is to run a loop from 1 to √N and find all factors of N and push them into a vector. Finally, sort the vector and print the K-th value from the vector.
Note: Elements in the vector will not be sorted initially as we are pushing both factors (i) and (n/i). That is why it is needed to sort the vector before printing the K-th factor.
Below is the implementation of the above approach :  

C++




// C++ program to find K-th smallest factor
 
#include <bits/stdc++.h>
using namespace std;
 
// function to find the k'th divisor
void findkth(int n, int k)
{
    // initialize a vector v
    vector<long long> v;
 
    // store all the divisors
    // so the loop will needs to run till sqrt ( n )
    for (int i = 1; i <= sqrt(n); i++) {
        if (n % i == 0) {
            v.push_back(i);
            if (i != sqrt(n))
                v.push_back(n / i);
        }
    }
 
    // sort the vector in an increasing order
    sort(v.begin(), v.end());
 
    // if k is greater than the size of vector
    // then no divisor can be possible
    if (k > v.size())
        cout << "Doesn't Exist";
    // else print the ( k - 1 )th value of vector
    else
        cout << v[k - 1];
}
 
// Driver code
int main()
{
    int n = 15, k = 2;
 
    findkth(n, k);
 
    return 0;
}


Java




// Java program to find K-th smallest factor
import java.util.*;
 
class GFG{
 
// function to find the k'th divisor
static void findkth(int n, int k)
{
    // initialize a vector v
    Vector<Integer> v = new Vector<Integer>();
 
    // store all the divisors
    // so the loop will needs to run till sqrt ( n )
    for (int i = 1; i <= Math.sqrt(n); i++) {
        if (n % i == 0) {
            v.add(i);
            if (i != Math.sqrt(n))
                v.add(n / i);
        }
    }
 
    // sort the vector in an increasing order
    Collections.sort(v);
 
    // if k is greater than the size of vector
    // then no divisor can be possible
    if (k > v.size())
        System.out.print("Doesn't Exist");
     
    // else print the ( k - 1 )th value of vector
    else
        System.out.print(v.get(k - 1));
}
 
// Driver code
public static void main(String[] args)
{
    int n = 15, k = 2;
 
    findkth(n, k);
}
}
 
// This code is contributed by 29AjayKumar


Python3




# Python3 program to find K-th smallest factor
from math import sqrt
 
# function to find the k'th divisor
def findkth(n, k):
     
    # initialize a vector v
    v = []
 
    # store all the divisors so the loop
    # will needs to run till sqrt ( n )
    p = int(sqrt(n)) + 1
    for i in range(1, p, 1):
        if (n % i == 0):
            v.append(i)
            if (i != sqrt(n)):
                v.append(n / i);
         
    # sort the vector in an increasing order
    v.sort(reverse = False)
 
    # if k is greater than the size of vector
    # then no divisor can be possible
    if (k > len(v)):
        print("Doesn't Exist")
         
    # else print the (k - 1)th
    # value of vector
    else:
        print(v[k - 1])
 
# Driver code
if __name__ == '__main__':
    n = 15
    k = 2
 
    findkth(n, k)
 
# This code is contributed by
# Surendra_Gangwar


C#




// C# program to find K-th smallest factor
using System;
using System.Collections.Generic;
 
class GFG{
  
// function to find the k'th divisor
static void findkth(int n, int k)
{
    // initialize a vector v
    List<int> v = new List<int>();
  
    // store all the divisors
    // so the loop will needs to run till sqrt ( n )
    for (int i = 1; i <= Math.Sqrt(n); i++) {
        if (n % i == 0) {
            v.Add(i);
            if (i != Math.Sqrt(n))
                v.Add(n / i);
        }
    }
  
    // sort the vector in an increasing order
    v.Sort();
  
    // if k is greater than the size of vector
    // then no divisor can be possible
    if (k > v.Count)
        Console.Write("Doesn't Exist");
      
    // else print the ( k - 1 )th value of vector
    else
        Console.Write(v[k - 1]);
}
  
// Driver code
public static void Main(String[] args)
{
    int n = 15, k = 2;
  
    findkth(n, k);
}
}
 
// This code is contributed by PrinciRaj1992


Javascript




<script>
function findkth( n,  k)
{
    // initialize a vector v
    var v=[];
 
    // store all the divisors
    // so the loop will needs to run till sqrt ( n )
    for (var i = 1; i <= Math.sqrt(n); i++) {
        if (n % i == 0) {
            v.push(i);
            if (i != Math.sqrt(n))
                v.push(n / i);
        }
    }
 
    // sort the vector in an increasing order
    v.sort(function fun(a,b){ return a-b });
 
    // if k is greater than the size of vector
    // then no divisor can be possible
    if (k > v.length)
        document.write("Doesn't Exist");
    // else print the ( k - 1 )th value of vector
    else
    document.write( v[k - 1]);
}
 
var n = 15, k = 2;
 
    findkth(n, k);
 
 
 
</script>


Output

3

Time Complexity: √N log( √N )
Efficient Approach: An efficient approach will be to store the factors in two separate vectors. That is, factors i will be stored in a separate vector and N/i will be stored in a separate vector for all i from 1 to √N. 
Now, if observed carefully, it can be seen that the first vector is already sorted in increasing order and the second vector is sorted in decreasing order. So, reverse the second vector and print the K-th element from either of the vectors in which it is lying.
Below is the implementation of the above approach: 
 

C++




// C++ program to find the K-th smallest factor
 
#include <bits/stdc++.h>
using namespace std;
 
// Function to find the k'th divisor
void findkth ( int n, int k)
{
    // initialize vectors v1 and v2
    vector <int> v1;
    vector <int> v2;
     
    // store all the divisors in the two vectors
    // accordingly
    for( int i = 1 ; i <= sqrt( n ); i++ )
    {
        if ( n % i == 0 )
        {
            v1.push_back ( i );
             
            if ( i != sqrt ( n ) )
                v2.push_back ( n / i );
        }
    }
     
    // reverse the vector v2 to sort it
    // in increasing order
    reverse(v2.begin(), v2.end());
     
    // if k is greater than the size of vectors
    // then no divisor can be possible
    if ( k > (v1.size() + v2.size()))
        cout << "Doesn't Exist" ;
    // else print the ( k - 1 )th value of vector
    else
    {
        // If K is lying in first vector
        if(k <= v1.size())
            cout<<v1[k-1];
        // If K is lying in second vector
        else
            cout<<v2[k-v1.size()-1];
    }
}
 
// Driver code
int main()
{
    int n = 15, k = 2;
     
    findkth ( n, k) ;
 
    return 0;
}


Java




// Java program to find the K-th smallest factor
import java.util.*;
 
class GFG
{
 
// Function to find the k'th divisor
static void findkth ( int n, int k)
{
    // initialize vectors v1 and v2
    Vector<Integer> v1 = new Vector<Integer>();
    Vector <Integer> v2 = new Vector<Integer>();
     
    // store all the divisors in the two vectors
    // accordingly
    for( int i = 1 ; i <= Math.sqrt( n ); i++ )
    {
        if ( n % i == 0 )
        {
            v1.add ( i );
             
            if ( i != Math.sqrt ( n ) )
                v2.add ( n / i );
        }
    }
     
    // reverse the vector v2 to sort it
    // in increasing order
    Collections.reverse(v2);
     
    // if k is greater than the size of vectors
    // then no divisor can be possible
    if ( k > (v1.size() + v2.size()))
        System.out.print("Doesn't Exist");
     
    // else print the ( k - 1 )th value of vector
    else
    {
        // If K is lying in first vector
        if(k <= v1.size())
            System.out.print(v1.get(k - 1));
         
        // If K is lying in second vector
        else
            System.out.print(v2.get(k-v1.size() - 1));
    }
}
 
// Driver code
public static void main(String[] args)
{
    int n = 15, k = 2;
     
    findkth ( n, k) ;
}
}
 
// This code is contributed by PrinciRaj1992


Python3




# Python3 program to find the K-th
# smallest factor
import math as mt
 
# Function to find the k'th divisor
def findkth (n, k):
 
    # initialize vectors v1 and v2
    v1 = list()
    v2 = list()
     
    # store all the divisors in the
    # two vectors accordingly
    for i in range(1, mt.ceil(n**(.5))):
     
        if (n % i == 0):
         
            v1.append(i)
             
            if (i != mt.ceil(mt.sqrt(n))):
                v2.append(n // i)
         
    # reverse the vector v2 to sort it
    # in increasing order
    v2[::-1]
     
    # if k is greater than the size of vectors
    # then no divisor can be possible
    if ( k > (len(v1) + len(v2))):
        print("Doesn't Exist", end = "")
         
    # else print the ( k - 1 )th value of vector
    else:
     
        # If K is lying in first vector
        if(k <= len(v1)):
            print(v1[k - 1])
             
        # If K is lying in second vector
        else:
            print(v2[k - len(v1) - 1])
     
# Driver code
n = 15
k = 2
findkth (n, k)
 
# This code is contributed by Mohit kumar


C#




// C# program to find
// the K-th smallest factor
using System;
using System.Collections.Generic;
class GFG{
 
// Function to find the k'th divisor
static void findkth (int n, int k)
{
  // initialize vectors v1 and v2
  List<int> v1 = new List<int>();
  List <int> v2 = new List<int>();
 
  // store all the divisors in the
  // two vectors accordingly
  for(int i = 1; i <= Math.Sqrt(n); i++)
  {
    if (n % i == 0)
    {
      v1.Add (i);
 
      if (i != Math.Sqrt (n))
        v2.Add (n / i);
    }
  }
 
  // reverse the vector v2 to sort it
  // in increasing order
  v2.Reverse();
 
  // if k is greater than the
  // size of vectors then no
  // divisor can be possible
  if (k > (v1.Count + v2.Count))
    Console.Write("Doesn't Exist");
 
  // else print the (k - 1)th
  // value of vector
  else
  {
    // If K is lying in first vector
    if(k <= v1.Count)
      Console.Write(v1[k - 1]);
 
    // If K is lying in second vector
    else
      Console.Write(v2[k - v1.Count - 1]);
  }
}
 
// Driver code
public static void Main(String[] args)
{
  int n = 15, k = 2;
  findkth (n, k);
}
}
 
// This code is contributed by gauravrajput1


Javascript




<script>
// Javascript program to find the K-th smallest factor
  
 // Function to find the k'th divisor
function findkth ( n,k)
{
    // initialize vectors v1 and v2
    let v1 = [];
    let v2 = [];
      
    // store all the divisors in the two vectors
    // accordingly
    for( let i = 1 ; i <= Math.sqrt( n ); i++ )
    {
        if ( n % i == 0 )
        {
            v1.push ( i );
              
            if ( i != Math.sqrt ( n ) )
                v2.push ( n / i );
        }
    }
      
    // reverse the vector v2 to sort it
    // in increasing order
    v2.reverse();
      
    // if k is greater than the size of vectors
    // then no divisor can be possible
    if ( k > (v1.length + v2.length))
        document.write("Doesn't Exist");
      
    // else print the ( k - 1 )th value of vector
    else
    {
        // If K is lying in first vector
        if(k <= v1.length)
            document.write(v1[k - 1]);
          
        // If K is lying in second vector
        else
            document.write(v2[k-v1.length - 1]);
    }
}
 
// Driver code
let n = 15, k = 2;
findkth ( n, k) ;
 
// This code is contributed by unknown2108
</script>


Output: 

3

 

Time Complexity: √N
 

Feeling lost in the world of random DSA topics, wasting time without progress? It’s time for a change! Join our DSA course, where we’ll guide you on an exciting journey to master DSA efficiently and on schedule.
Ready to dive in? Explore our Free Demo Content and join our DSA course, trusted by over 100,000 neveropen!

RELATED ARTICLES

Most Popular

Recent Comments