Thursday, January 9, 2025
Google search engine
HomeData Modelling & AICount number of ways to divide an array into two halves with...

Count number of ways to divide an array into two halves with same sum

Given an integer array of N elements. The task is to find the number of ways to split the array into two equal sum sub-arrays of non-zero lengths.

Examples: 

Input: arr[] = {0, 0, 0, 0}
Output:
Explanation:
All the possible ways are: { {{0}, {0, 0, 0}}, {{0, 0}, {0, 0}}, {{0, 0, 0}, {0}} 
Therefore, the required output is 3.

Input: {1, -1, 1, -1}
Output: 1
 

 

Simple Solution: A simple solution is to generate all the possible contiguous sub-arrays pairs and find there sum. If their sum is the same, we will increase the count by one.
Time Complexity: O(N2)
Auxiliary Space: O(1)
Efficient Approach: The idea is to take an auxiliary array say, aux[] to calculate the presum of the array such that for an index i aux[i] will store the sum of all elements from index 0 to index i.
By doing this we can calculate the left sum and right sum for every index of the array in constant time. 
So, the idea is to: 
 

  1. Find the sum of all the numbers of the array and store it in a variable say, S. If the sum is odd, then the answer will be 0.
  2. Traverse the array and keep calculating the sum of elements. At ith step, we will use the variable S to maintain sum of all the elements from index 0 to i. 
    • Calculate sum upto the ith index.
    • If this sum equals S/2, increase the count of the number of ways by 1.
  3. Do this from i=0 to i=N-2.

Below is the implementation of the above approach: 
 

C++




// C++ program to count the number of ways to
// divide an array into two halves
// with the same sum
 
#include <bits/stdc++.h>
using namespace std;
 
// Function to count the number of ways to
// divide an array into two halves
// with same sum
int cntWays(int arr[], int n)
{
    // if length of array is 1
    // answer will be 0 as we have
    // to split it into two
    // non-empty halves
    if (n == 1)
        return 0;
 
    // variables to store total sum,
    // current sum and count
    int tot_sum = 0, sum = 0, ans = 0;
 
    // finding total sum
    for (int i = 0; i < n; i++)
        tot_sum += arr[i];
 
    // checking if sum equals total_sum/2
    for (int i = 0; i < n - 1; i++) {
        sum += arr[i];
        if (sum == tot_sum / 2)
            ans++;
    }
 
    return ans;
}
 
// Driver Code
int main()
{
    int arr[] = { 1, -1, 1, -1, 1, -1 };
 
    int n = sizeof(arr) / sizeof(int);
 
    cout << cntWays(arr, n);
 
    return 0;
}


Java




// Java program to count the number of ways to
// divide an array into two halves
// with the same sum
import java.util.*;
import java.io.*;
class GFG
{
 
    // Function to count the number of ways to
    // divide an array into two halves
    // with same sum
    static int cntWays(int arr[], int n)
    {
        // if length of array is 1
        // answer will be 0 as we have
        // to split it into two
        // non-empty halves
        if (n == 1)
        {
            return 0;
        }
 
        // variables to store total sum,
        // current sum and count
        int tot_sum = 0, sum = 0, ans = 0;
 
        // finding total sum
        for (int i = 0; i < n; i++)
        {
            tot_sum += arr[i];
        }
 
        // checking if sum equals total_sum/2
        for (int i = 0; i < n - 1; i++)
        {
            sum += arr[i];
            if (sum == tot_sum / 2)
            {
                ans++;
            }
        }
 
        return ans;
    }
 
    // Driver Code
    public static void main(String[] args)
    {
        int arr[] = {1, -1, 1, -1, 1, -1};
 
        int n = arr.length;
 
        System.out.println(cntWays(arr, n));
    }
}
 
// This code contributed by Rajput-Ji


Python3




# Python program to count the number of ways to
# divide an array into two halves
# with the same sum
 
# Function to count the number of ways to
# divide an array into two halves
# with same sum
def cntWays(arr, n):
    # if length of array is 1
    # answer will be 0 as we have
    # to split it into two
    # non-empty halves
    if (n == 1):
        return 0;
 
    # variables to store total sum,
    # current sum and count
    tot_sum = 0; sum = 0; ans = 0;
 
    # finding total sum
    for i in range(0,n):
        tot_sum += arr[i];
 
    # checking if sum equals total_sum/2
    for i in range(0,n-1):
        sum += arr[i];
        if (sum == tot_sum / 2):
            ans+=1;
    return ans;
 
# Driver Code
arr = [1, -1, 1, -1, 1, -1 ];
 
n = len(arr);
 
print(cntWays(arr, n));
 
# This code contributed by PrinciRaj1992


C#




// C# program to count the number of ways to
// divide an array into two halves with
// the same sum
using System;
 
class GFG
{
 
    // Function to count the number of ways to
    // divide an array into two halves
    // with same sum
    static int cntWays(int []arr, int n)
    {
        // if length of array is 1
        // answer will be 0 as we have
        // to split it into two
        // non-empty halves
        if (n == 1)
        {
            return 0;
        }
 
        // variables to store total sum,
        // current sum and count
        int tot_sum = 0, sum = 0, ans = 0;
 
        // finding total sum
        for (int i = 0; i < n; i++)
        {
            tot_sum += arr[i];
        }
 
        // checking if sum equals total_sum/2
        for (int i = 0; i < n - 1; i++)
        {
            sum += arr[i];
            if (sum == tot_sum / 2)
            {
                ans++;
            }
        }
 
        return ans;
    }
 
    // Driver Code
    public static void Main()
    {
        int []arr = {1, -1, 1, -1, 1, -1};
 
        int n = arr.Length;
 
        Console.WriteLine(cntWays(arr, n));
    }
}
 
// This code contributed by anuj_67..


Javascript




<script>
 
      // JavaScript program to count the number of ways to
      // divide an array into two halves
      // with the same sum
 
      // Function to count the number of ways to
      // divide an array into two halves
      // with same sum
      function cntWays(arr, n)
      {
        // if length of array is 1
        // answer will be 0 as we have
        // to split it into two
        // non-empty halves
        if (n == 1) return 0;
 
        // variables to store total sum,
        // current sum and count
        var tot_sum = 0,
          sum = 0,
          ans = 0;
 
        // finding total sum
        for (var i = 0; i < n; i++) tot_sum += arr[i];
 
        // checking if sum equals total_sum/2
        for (var i = 0; i < n - 1; i++) {
          sum += arr[i];
          if (sum == tot_sum / 2)
          ans++;
        }
 
        return ans;
      }
 
      // Driver Code
      var arr = [1, -1, 1, -1, 1, -1];
      var n = arr.length;
      document.write(cntWays(arr, n));
       
</script>


Output: 

2

 

Time Complexity: O(N), since there runs a loop from 0 to (n – 1)
Auxiliary Space: O(1), since no extra space has been taken.

Feeling lost in the world of random DSA topics, wasting time without progress? It’s time for a change! Join our DSA course, where we’ll guide you on an exciting journey to master DSA efficiently and on schedule.
Ready to dive in? Explore our Free Demo Content and join our DSA course, trusted by over 100,000 neveropen!

RELATED ARTICLES

Most Popular

Recent Comments