Friday, January 10, 2025
Google search engine
HomeData Modelling & AISum of n digit numbers divisible by a given number

Sum of n digit numbers divisible by a given number

Given n and a number, the task is to find the sum of n digit numbers that are divisible by given number.
Examples: 

Input : n = 2, number = 7
Output : 728
Explanation: 
There are thirteen n digit numbers that are divisible by 7.
 Numbers are  : 14+ 21 + 28 + 35 + 42 + 49 + 56 + 63 +70 + 77 + 84 + 91 + 98.

Input : n = 3, number = 7
Output : 70336

Input : n = 3, number = 4
Output : 123300

Native Approach: Traverse through all n digit numbers. For every number check for divisibility, and make the sum.  

C++




// Simple CPP program to sum of n digit
// divisible numbers.
#include <cmath>
#include <iostream>
using namespace std;
 
// Returns sum of n digit numbers
// divisible by 'number'
int totalSumDivisibleByNum(int n, int number)
{
    // compute the first and last term
    int firstnum = pow(10, n - 1);
    int lastnum = pow(10, n);
     
    // sum of number which having
    // n digit and divisible by number
    int sum = 0;
    for (int i = firstnum; i < lastnum; i++)
        if (i % number == 0)
            sum += i;
    return sum;
}
 
// Driver code
int main()
{
    int n = 3, num = 7;
    cout << totalSumDivisibleByNum(n, num) << "\n";
    return 0;
}


Java




// Simple Java program to sum of n digit
// divisible numbers.
import java.io.*;
 
class GFG {
     
    // Returns sum of n digit numbers
    // divisible by 'number'
    static int totalSumDivisibleByNum(int n, int number)
    {
        // compute the first and last term
        int firstnum = (int)Math.pow(10, n - 1);
        int lastnum = (int)Math.pow(10, n);
         
        // sum of number which having
        // n digit and divisible by number
        int sum = 0;
        for (int i = firstnum; i < lastnum; i++)
            if (i % number == 0)
                sum += i;
        return sum;
    }
 
    // Driver code
    public static void main (String[] args)
    {
        int n = 3, num = 7;
        System.out.println(totalSumDivisibleByNum(n, num));
    }
}
 
// This code is contributed by Ajit.


Python3




# Simple Python 3 program to sum 
# of n digit divisible numbers.
 
# Returns sum of n digit numbers
# divisible by 'number'
def totalSumDivisibleByNum(n, number):
 
    # compute the first and last term
    firstnum = pow(10, n - 1)
    lastnum = pow(10, n)
     
    # sum of number which having
    # n digit and divisible by number
    sum = 0
    for i in range(firstnum, lastnum):
        if (i % number == 0):
            sum += i
    return sum
 
 
# Driver code
n = 3; num = 7
print(totalSumDivisibleByNum(n, num))
 
# This code is contributed by Smitha Dinesh Semwal


C#




// Simple C# program to sum of n digit
// divisible numbers.
using System;
 
class GFG {
     
    // Returns sum of n digit numbers
    // divisible by 'number'
    static int totalSumDivisibleByNum(int n, int number)
    {
         
        // compute the first and last term
        int firstnum = (int)Math.Pow(10, n - 1);
        int lastnum = (int)Math.Pow(10, n);
         
        // sum of number which having
        // n digit and divisible by number
        int sum = 0;
         
        for (int i = firstnum; i < lastnum; i++)
            if (i % number == 0)
                sum += i;
                 
        return sum;
    }
 
    // Driver code
    public static void Main ()
    {
        int n = 3, num = 7;
         
        Console.WriteLine(totalSumDivisibleByNum(n, num));
    }
}
 
// This code is contributed by vt_m.


PHP




<?php
// Simple PHP program to sum of
// n digit divisible numbers.
 
// Returns sum of n digit numbers
// divisible by 'number'
function totalSumDivisibleByNum($n, $number)
{
     
    // compute the first and last term
    $firstnum = pow(10, $n - 1);
    $lastnum = pow(10, $n);
     
    // sum of number which having
    // n digit and divisible by number
    $sum = 0;
    for ($i = $firstnum; $i < $lastnum; $i++)
        if ($i % $number == 0)
            $sum += $i;
    return $sum;
}
 
    // Driver code
    $n = 3;$num = 7;
    echo totalSumDivisibleByNum($n, $num) , "\n";
     
// This code is contributed by aj_36
?>


Javascript




<script>
 
// JavaScript program to sum of n digit
// divisible numbers.
 
// Returns sum of n digit numbers
// divisible by 'number'
function totalSumDivisibleByNum(n, number)
{
     
    // compute the first and last term
    let firstnum = Math.pow(10, n - 1);
    let lastnum = Math.pow(10, n);
       
    // sum of number which having
    // n digit and divisible by number
    let sum = 0;
    for(let i = firstnum; i < lastnum; i++)
        if (i % number == 0)
            sum += i;
             
    return sum;
}
 
// Driver Code
let n = 3, num = 7;
 
document.write(totalSumDivisibleByNum(n, num));
 
// This code is contributed by chinmoy1997pal
             
</script>


Output: 

70336

 

Time Complexity: O(10n)

Auxiliary Space: O(1)

Efficient Method : 
First, find the count of n digit numbers divisible by a given number. Then apply formula for sum of AP

    count/2  * (first-term + last-term)

C++




// Efficient CPP program to find the sum
// divisible numbers.
#include <cmath>
#include <iostream>
using namespace std;
 
// find the Sum of having n digit and
// divisible by the number
int totalSumDivisibleByNum(int digit,
                           int number)
{
    // compute the first and last term
    int firstnum = pow(10, digit - 1);
    int lastnum = pow(10, digit);
 
    // first number which is divisible
    // by given number
    firstnum = (firstnum - firstnum % number)
                                   + number;
 
    // last number which is divisible
    // by given number
    lastnum = (lastnum - lastnum % number);
 
    // total divisible number
    int count = ((lastnum - firstnum) /
                               number + 1);
 
    // return the total sum
    return ((lastnum + firstnum) * count) / 2;
}
 
int main()
{
    int n = 3, number = 7;
    cout << totalSumDivisibleByNum(n, number);
    return 0;
}


Java




// Efficient Java program to find the sum
// divisible numbers.
import java.io.*;
 
class GFG {
     
    // find the Sum of having n digit and
    // divisible by the number
    static int totalSumDivisibleByNum(int digit,
                                      int number)
    {
        // compute the first and last term
        int firstnum = (int)Math.pow(10, digit - 1);
        int lastnum = (int)Math.pow(10, digit);
     
        // first number which is divisible
        // by given number
        firstnum = (firstnum - firstnum % number)
                   + number;
     
        // last number which is divisible
        // by given number
        lastnum = (lastnum - lastnum % number);
     
        // total divisible number
        int count = ((lastnum - firstnum) /
                                number + 1);
     
        // return the total sum
        return ((lastnum + firstnum) * count) / 2;
    }
 
    // Driver code
    public static void main (String[] args)
    {
        int n = 3, number = 7;
        System.out.println(totalSumDivisibleByNum(n, number));
    }
}
 
// This code is contributed by Ajit.


Python3




# Efficient Python3 program to 
# find the sum divisible numbers.
 
# find the Sum of having n digit
# and divisible by the number
def totalSumDivisibleByNum(digit, number):
 
    # compute the first and last term
    firstnum = pow(10, digit - 1)
    lastnum = pow(10, digit)
 
    # first number which is divisible
    # by given number
    firstnum = (firstnum - firstnum % number) + number
 
    # last number which is divisible
    # by given number
    lastnum = (lastnum - lastnum % number)
 
    # total divisible number
    count = ((lastnum - firstnum) / number + 1)
 
    # return the total sum
    return int(((lastnum + firstnum) * count) / 2)
 
 
# Driver code
digit = 3; num = 7
print(totalSumDivisibleByNum(digit, num))
 
# This code is contributed by Smitha Dinesh Semwal


C#




// Efficient Java program to find the sum
// divisible numbers.
using System;
 
class GFG {
     
    // find the Sum of having n digit and
    // divisible by the number
    static int totalSumDivisibleByNum(int digit,
                                    int number)
    {
         
        // compute the first and last term
        int firstnum = (int)Math.Pow(10, digit - 1);
        int lastnum = (int)Math.Pow(10, digit);
     
        // first number which is divisible
        // by given number
        firstnum = (firstnum - firstnum % number)
                + number;
     
        // last number which is divisible
        // by given number
        lastnum = (lastnum - lastnum % number);
     
        // total divisible number
        int count = ((lastnum - firstnum) /
                                number + 1);
     
        // return the total sum
        return ((lastnum + firstnum) * count) / 2;
    }
 
    // Driver code
    public static void Main ()
    {
        int n = 3, number = 7;
         
        Console.WriteLine(totalSumDivisibleByNum(n, number));
    }
}
 
// This code is contributed by vt_m.


PHP




<?php
// Efficient PHP program to find
// the sum divisible numbers.
 
// find the Sum of having n digit and
// divisible by the number
function totalSumDivisibleByNum($digit,
                                $number)
{
     
    // compute the first and last term
    $firstnum = pow(10, $digit - 1);
    $lastnum = pow(10, $digit);
 
    // first number which is divisible
    // by given number
    $firstnum = ($firstnum - $firstnum % $number)
                                       + $number;
 
    // last number which is divisible
    // by given number
    $lastnum = ($lastnum - $lastnum % $number);
 
    // total divisible number
    $count = (($lastnum - $firstnum) /
                          $number + 1);
 
    // return the total sum
    return (($lastnum + $firstnum) *
                         $count) / 2;
}
 
    // Driver Code
    $n = 3; $number = 7;
    echo totalSumDivisibleByNum($n, $number);
 
// This code is contributed by anuj_67.
?>


Javascript




<script>
 
// Efficient Javascript program to find
// the sum divisible numbers.
 
// Find the Sum of having n digit and
// divisible by the number
function totalSumDivisibleByNum(digit, number)
{
     
    // Compute the first and last term
    let firstnum = Math.pow(10, digit - 1);
    let lastnum = Math.pow(10, digit);
  
    // First number which is divisible
    // by given number
    firstnum = (firstnum - firstnum %
                 number) + number;
  
    // Last number which is divisible
    // by given number
    lastnum = (lastnum - lastnum % number);
  
    // Total divisible number
    let count = ((lastnum - firstnum) /
                   number + 1);
  
    // Return the total sum
    return ((lastnum + firstnum) * count) / 2;
}
 
// Driver Code
let n = 3, number = 7;
      
document.write(totalSumDivisibleByNum(n, number));
 
// This code is contributed by divyesh072019
 
</script>


Output: 

70336

 

Time Complexity: O(1)

Auxiliary Space: O(1)

Feeling lost in the world of random DSA topics, wasting time without progress? It’s time for a change! Join our DSA course, where we’ll guide you on an exciting journey to master DSA efficiently and on schedule.
Ready to dive in? Explore our Free Demo Content and join our DSA course, trusted by over 100,000 neveropen!

RELATED ARTICLES

Most Popular

Recent Comments