Given a number X, the task is to find the minimum number N such that the sum of the count of all factors from 1 to N is greater than equal to X.
Examples:
Input: X = 10
Output: 5
Explanation:
Total factors of 1 = 1 (1)
Total factors of 2 = 2 (1, 2)
Total factors of 3 = 2 (1, 3)
Total factors of 4 = 3 (1, 2, 4)
Total factors of 5 = 2 (1, 5)
Total count = 1 + 2 + 2 + 3 + 2 = 10 which is greater than or equal to X i.e., 10
Input: X = 19
Output: 8
Explanation:
Total factors of 1 = 1 (1)
Total factors of 2 = 2 (1, 2)
Total factors of 3 = 2 (1, 3)
Total factors of 4 = 3 (1, 2, 4)
Total factors of 5 = 2 (1, 5)
Total factors of 6 = 2 (1, 2, 3, 6)
Total factors of 7 = 2 (1, 7)
Total factors of 8 = 2 (1, 2, 4, 8)
Total count = 1 + 2 + 2 + 3 + 2 + 4 + 2 + 4 = 20 which is greater than or equal to X i.e., 19
Naive Approach: The naive approach is to run a loop starting from 1 until the total count of factor is greater than equal to X.
Algorithm:
- Define a macro MAX as 1000050 and a type alias ‘lli’ for long int.
- Define a function CountFactors that takes a long integer ‘N’ as input and returns the count of total factors of ‘N’.
- Inside the CountFactors function, initialize a variable ‘cnt’ to zero.
- Run a loop from i=1 to i*i <= N and check if N is divisible by i without leaving a remainder. If yes, increment cnt by 1. If N/i is not equal to i, increment cnt by 1 again.
- Return the value of cnt as the count of total factors of N.
- Define another function minN that takes a long integer ‘X’ as input and returns the lowest number ‘N’ for which the sum of total factors of all numbers from 1 to N is greater than or equal to X.
- Inside the minN function, initialize a variable ‘i’ to 1 and a variable ‘total’ to 0.
- Run a loop until a condition is met that will break the loop. Inside the loop, add the count of total factors of ‘i’ returned by CountFactors function to the variable ‘total’.
- If ‘total’ is greater than or equal to ‘X’, return the current value of ‘i’ as the lowest number ‘N’ satisfying the given condition.
- If ‘total’ is less than ‘X’, increment ‘i’ by 1 and continue with the loop until the condition is met.
- In the main function, define a long integer ‘X’ and initialize it to 10.
- Call the minN function with ‘X’ as input and print the returned value.
- End the program.
Below is the implementation of the above approach:
C++
// C++ program for the above approach #include <bits/stdc++.h> using namespace std; #define MAX 1000050 #define lli long int // Function to count total factors of N lli CountFactors(lli N) { lli cnt = 0; for (lli i = 1; i * i <= N; i++) { if (N % i == 0) cnt += ((N / i == i) ? 1 : 2); } // Return the count return cnt; } // Function to search lowest N // such that the given condition // is satisfied lli minN(lli X) { lli i = 1; lli total = 0; while (1) { // Add the count of total factor // of i to variable total total = total + CountFactors(i); // If total count is greater than // equal to N, then return i if (total >= X) return i; i++; } } // Driver Code int main() { // Given sum lli X = 10; // Function Call cout << minN(X) << endl; return 0; } |
Java
// Java program for the above approach class GFG{ static final int MAX = 1000050 ; // Function to count total factors of N static int CountFactors( int N) { int cnt = 0 ; for ( int i = 1 ; i * i <= N; i++) { if (N % i == 0 ) cnt += ((N / i == i) ? 1 : 2 ); } // Return the count return cnt; } // Function to search lowest N // such that the given condition // is satisfied static int minN( int X) { int i = 1 ; int total = 0 ; while ( true ) { // Add the count of total factor // of i to variable total total = total + CountFactors(i); // If total count is greater than // equal to N, then return i if (total >= X) return i; i++; } } // Driver Code public static void main(String[] args) { // Given sum int X = 10 ; // Function Call System.out.print(minN(X) + "\n" ); } } // This code is contributed by PrinciRaj1992 |
Python3
# Python3 program for # the above approach MAX = 1000050 # Function to count # total factors of N def CountFactors(N): cnt = 0 i = 1 while i * i < = N: if (N % i = = 0 ): if (N / / i = = i): cnt + = 1 else : cnt + = 2 i + = 1 # Return the count return cnt # Function to search lowest N # such that the given condition # is satisfied def minN(X): i = 1 total = 0 while ( 1 ): # Add the count of total factor # of i to variable total total = total + CountFactors(i) # If total count is greater than # equal to N, then return i if (total > = X): return i i + = 1 # Driver Code if __name__ = = "__main__" : # Given sum X = 10 # Function Call print ( minN(X)) # This code is contributed by Chitranayal |
C#
// C# program for the above approach using System; class GFG{ //static readonly int MAX = 1000050; // Function to count total factors of N static int CountFactors( int N) { int cnt = 0; for ( int i = 1; i * i <= N; i++) { if (N % i == 0) cnt += ((N / i == i) ? 1 : 2); } // Return the count return cnt; } // Function to search lowest N // such that the given condition // is satisfied static int minN( int X) { int i = 1; int total = 0; while ( true ) { // Add the count of total factor // of i to variable total total = total + CountFactors(i); // If total count is greater than // equal to N, then return i if (total >= X) return i; i++; } } // Driver Code public static void Main(String[] args) { // Given sum int X = 10; // Function Call Console.Write(minN(X) + "\n" ); } } // This code is contributed by PrinciRaj1992 |
Javascript
<script> // javascript program for the above approachstatic final var MAX = 1000050; // Function to count total factors of N function CountFactors(N) { var cnt = 0; for (i = 1; i * i <= N; i++) { if (N % i == 0) cnt += ((N / i == i) ? 1 : 2); } // Return the count return cnt; } // Function to search lowest N // such that the given condition // is satisfied function minN(X) { var i = 1; var total = 0; while ( true ) { // Add the count of total factor // of i to variable total total = total + CountFactors(i); // If total count is greater than // equal to N, then return i if (total >= X) return i; i++; } } // Driver Code //Given sum var X = 10; // Function Call document.write(minN(X) + "\n" ); // This code is contributed by 29AjayKumar </script> |
5
Time Complexity: O(N*sqrt(N))
Auxiliary Space: O(1)
Efficient Approach: The above approach can be optimized by doing some precomputation. Below are the steps:
- Calculate and store the smallest prime factor of each number (SPF) using the approach discussed in this article.
- Find the count of factors of N efficiently, using Sieve of Eratosthenes and the above calculated smallest prime factor.
- Create a prefix sum array to store the sum of the count of factors from 1 to MAX.
- To find the lowest N such that the above condition satisfied, instead of linear search in prefix array perform a binary search on the prefix sum array (as the prefix sum array will be in increasing order), so that time complexity will be optimal for multiple queries also.
Below is the implementation of the above approach:
C++
// C++ program for the above approach #include <bits/stdc++.h> using namespace std; #define MAX 1000050 #define lli long int // Array to store smallest // prime factors of each no. lli spf[MAX + 1]; // Function to calculate smallest // prime factor of N. void calculate_SPF() { for (lli i = 0; i <= MAX; i++) spf[i] = i; for (lli i = 4; i <= MAX; i += 2) spf[i] = 2; for (lli i = 3; i * i <= MAX; i++) { if (spf[i] == i) { for ( int j = i * i; j <= MAX; j += i) // marking spf[j] if // it is not previously // marked if (spf[j] == j) spf[j] = i; } } } // Array to store the count of // factor for N lli tfactor[MAX + 1]; // Prefix array which contains // the count of factors from 1 to N lli pre[MAX + 1]; // Function to count total factors // from 1 to N void CountTotalfactors() { tfactor[1] = pre[1] = 1; for (lli i = 2; i <= MAX; i++) { lli mspf = spf[i]; lli prim = mspf; lli temp = i; lli cnt = 0; while (temp % mspf == 0) { temp /= mspf; cnt += 1; prim = prim * mspf; } // Store total factors of i tfactor[i] = (cnt + 1) * tfactor[temp]; // Stores total factors // from 1 to i pre[i] = pre[i - 1] + tfactor[i]; } } // Function to search lowest X // such that the given condition // is satisfied lli BinarySearch(lli X) { lli start = 1; lli end = MAX - 1; while (start < end) { // Find mid lli mid = (start + end) / 2; if (pre[mid] == X) return mid; // Search in the right half else if (pre[mid] < X) start = mid + 1; // Search in the left half else end = mid; } // Return the position after // Binary Search return start; } // Function to find the required sum void findSumOfCount( int X) { // Precompute smallest prime // factor of each value calculate_SPF(); // Calculate count of total // factors from 1 to N CountTotalfactors(); // Binary search to find minimum N cout << BinarySearch(X) << endl; } // Driver Code int main() { // Given Sum int X = 10; // Function Call findSumOfCount(X); return 0; } |
Java
// Java program for the above approach import java.util.*; class GFG{ static final int MAX = 1000050 ; // Array to store smallest // prime factors of each no. static int []spf = new int [MAX + 1 ]; // Function to calculate smallest // prime factor of N. static void calculate_SPF() { for ( int i = 0 ; i <= MAX; i++) spf[i] = i; for ( int i = 4 ; i <= MAX; i += 2 ) spf[i] = 2 ; for ( int i = 3 ; i * i <= MAX; i++) { if (spf[i] == i) { for ( int j = i * i; j <= MAX; j += i) // marking spf[j] if // it is not previously // marked if (spf[j] == j) spf[j] = i; } } } // Array to store the count of // factor for N static int []tfactor = new int [MAX + 1 ]; // Prefix array which contains // the count of factors from 1 to N static int []pre = new int [MAX + 1 ]; // Function to count total factors // from 1 to N static void CountTotalfactors() { tfactor[ 1 ] = pre[ 1 ] = 1 ; for ( int i = 2 ; i <= MAX; i++) { int mspf = spf[i]; int prim = mspf; int temp = i; int cnt = 0 ; while (temp % mspf == 0 ) { temp /= mspf; cnt += 1 ; prim = prim * mspf; } // Store total factors of i tfactor[i] = (cnt + 1 ) * tfactor[temp]; // Stores total factors // from 1 to i pre[i] = pre[i - 1 ] + tfactor[i]; } } // Function to search lowest X // such that the given condition // is satisfied static int BinarySearch( int X) { int start = 1 ; int end = MAX - 1 ; while (start < end) { // Find mid int mid = (start + end) / 2 ; if (pre[mid] == X) return mid; // Search in the right half else if (pre[mid] < X) start = mid + 1 ; // Search in the left half else end = mid; } // Return the position after // Binary Search return start; } // Function to find the required sum static void findSumOfCount( int X) { // Precompute smallest prime // factor of each value calculate_SPF(); // Calculate count of total // factors from 1 to N CountTotalfactors(); // Binary search to find minimum N System.out.print(BinarySearch(X) + "\n" ); } // Driver Code public static void main(String[] args) { // Given Sum int X = 10 ; // Function Call findSumOfCount(X); } } // This code is contributed by PrinciRaj1992 |
Python3
# Python3 program for the # above approach MAX = 1000050 # Array to store smallest # prime factors of each no. spf = [ 0 for i in range ( MAX + 1 )] # Function to calculate smallest # prime factor of N. def calculate_SPF(): for i in range ( MAX + 1 ): spf[i] = i; for i in range ( 4 , MAX + 1 , 2 ): spf[i] = 2 ; i = 3 while (i * i < = MAX ): if (spf[i] = = i) j = i * i while (j < = MAX ): # Marking spf[j] if # it is not previously # marked if (spf[j] = = j): spf[j] = i; j + = i i + = 1 # Array to store the # count of factor for N tfactor = [ 0 for i in range ( MAX + 1 )] # Prefix array which contains # the count of factors from 1 to N pre = [ 0 for i in range ( MAX + 1 )] # Function to count # total factors from 1 to N def CountTotalfactors(): tfactor[ 1 ] = pre[ 1 ] = 1 ; for i in range ( 2 , MAX + 1 ): mspf = spf[i]; prim = mspf; temp = i; cnt = 0 ; while (temp % mspf = = 0 ): temp / / = mspf; cnt + = 1 ; prim = prim * mspf; # Store total factors of i tfactor[i] = (cnt + 1 ) * tfactor[temp]; # Stores total factors # from 1 to i pre[i] = pre[i - 1 ] + tfactor[i]; # Function to search lowest X # such that the given condition # is satisfied def BinarySearch(X): start = 1 ; end = MAX - 1 ; while (start < end): # Find mid mid = (start + end) / / 2 ; if (pre[mid] = = X): return mid; # Search in the right half elif (pre[mid] < X): start = mid + 1 ; # Search in the left half else : end = mid; # Return the position after # Binary Search return start; # Function to find the # required sum def findSumOfCount(X): # Precompute smallest prime # factor of each value calculate_SPF(); # Calculate count of total # factors from 1 to N CountTotalfactors(); # Binary search to find # minimum N print (BinarySearch(X)) # Driver code if __name__ = = "__main__" : # Given Sum X = 10 ; # Function Call findSumOfCount(X); # This code is contributed by rutvik_56 |
C#
// C# program for the above approach using System; class GFG{ const int MAX = 1000050; // Array to store smallest // prime factors of each no. static int []spf = new int [MAX + 1]; // Function to calculate smallest // prime factor of N. static void calculate_SPF() { for ( int i = 0; i <= MAX; i++) spf[i] = i; for ( int i = 4; i <= MAX; i += 2) spf[i] = 2; for ( int i = 3; i * i <= MAX; i++) { if (spf[i] == i) { for ( int j = i * i; j <= MAX; j += i) // marking spf[j] if // it is not previously // marked if (spf[j] == j) spf[j] = i; } } } // Array to store the count of // factor for N static int []tfactor = new int [MAX + 1]; // Prefix array which contains // the count of factors from 1 to N static int []pre = new int [MAX + 1]; // Function to count total factors // from 1 to N static void CountTotalfactors() { tfactor[1] = pre[1] = 1; for ( int i = 2; i <= MAX; i++) { int mspf = spf[i]; int prim = mspf; int temp = i; int cnt = 0; while (temp % mspf == 0) { temp /= mspf; cnt += 1; prim = prim * mspf; } // Store total factors of i tfactor[i] = (cnt + 1) * tfactor[temp]; // Stores total factors // from 1 to i pre[i] = pre[i - 1] + tfactor[i]; } } // Function to search lowest X // such that the given condition // is satisfied static int BinarySearch( int X) { int start = 1; int end = MAX - 1; while (start < end) { // Find mid int mid = (start + end) / 2; if (pre[mid] == X) return mid; // Search in the right half else if (pre[mid] < X) start = mid + 1; // Search in the left half else end = mid; } // Return the position after // Binary Search return start; } // Function to find the required sum static void findSumOfCount( int X) { // Precompute smallest prime // factor of each value calculate_SPF(); // Calculate count of total // factors from 1 to N CountTotalfactors(); // Binary search to find minimum N Console.Write(BinarySearch(X) + "\n" ); } // Driver Code public static void Main() { // Given Sum int X = 10; // Function Call findSumOfCount(X); } } // This code is contributed by Code_Mech |
Javascript
<script> // JavaScript program for the above approach var MAX = 1000050; // Array to store smallest // prime factors of each no. var spf = Array(MAX+1); // Function to calculate smallest // prime factor of N. function calculate_SPF() { for ( var i = 0; i <= MAX; i++) spf[i] = i; for ( var i = 4; i <= MAX; i += 2) spf[i] = 2; for ( var i = 3; i * i <= MAX; i++) { if (spf[i] == i) { for ( var j = i * i; j <= MAX; j += i) // marking spf[j] if // it is not previously // marked if (spf[j] == j) spf[j] = i; } } } // Array to store the count of // factor for N var tfactor = Array(MAX+1); // Prefix array which contains // the count of factors from 1 to N var pre = Array(MAX+1); // Function to count total factors // from 1 to N function CountTotalfactors() { tfactor[1] = pre[1] = 1; for ( var i = 2; i <= MAX; i++) { var mspf = spf[i]; var prim = mspf; var temp = i; var cnt = 0; while (temp % mspf == 0) { temp = parseInt(temp/mspf); cnt += 1; prim = prim * mspf; } // Store total factors of i tfactor[i] = (cnt + 1) * tfactor[temp]; // Stores total factors // from 1 to i pre[i] = pre[i - 1] + tfactor[i]; } } // Function to search lowest X // such that the given condition // is satisfied function BinarySearch(X) { var start = 1; var end = MAX - 1; while (start < end) { // Find mid var mid = parseInt((start + end) / 2); if (pre[mid] == X) return mid; // Search in the right half else if (pre[mid] < X) start = mid + 1; // Search in the left half else end = mid; } // Return the position after // Binary Search return start; } // Function to find the required sum function findSumOfCount( X) { // Precompute smallest prime // factor of each value calculate_SPF(); // Calculate count of total // factors from 1 to N CountTotalfactors(); // Binary search to find minimum N document.write( BinarySearch(X) + "<br>" ); } // Driver Code // Given Sum var X = 10; // Function Call findSumOfCount(X); </script> |
5
Time Complexity: O(MAX*log(MAX))
Auxiliary Space: O(MAX)
Note: If there are Q queries, then the time complexity of finding N for all the Q queries will be O(Q*log(MAX)).
Ready to dive in? Explore our Free Demo Content and join our DSA course, trusted by over 100,000 neveropen!