Sunday, November 17, 2024
Google search engine
HomeData Modelling & AIFind original sequence from Array containing the sequence merged many times in...

Find original sequence from Array containing the sequence merged many times in order

Given a number N and an array arr[] that consist of merging N length sequence of distinct integers any number of times maintaining the relative order of elements in the initial sequence. The task is to find the initial sequence of length N maintaining the right order.
 

Examples:

Input: N = 4, arr[] = {1, 13, 1, 24, 13, 24, 2, 2}
Output: 1 13 24 2 
Explanation: 
Here the given sequence is obtained by merging 1 13 24 2 maintaining the relative order of elements. Therefore, the answer is 1 13 24 2.

Input: N = 3, arr[] = {3, 2, 3, 1, 2, 3, 2, 1, 1}
Output: 3 2 1
Explanation:
Here the given sequence is obtained by merging 3 2 1 maintaining the relative order of elements. Therefore, the answer is 3 2 1.

Approach: The idea is to observe that the element occurring first in the given sequence is the first element of the resultant restored sequence. Take that element in our restored sequence and don’t include duplicate from the given sequence. Perform the same for the rest of the elements until we reach the end. The idea can be implemented by both Map and Set in C++.

Using Map

  1. Traverse through the given sequence from left to right.
  2. The element coming for the first time in the sequence is taken into account and marked using a map.
  3. Elements that are marked while traversing are ignored.
  4. Step 2 and Step 3 is continued until the end of the given sequence is reached.

Below is the implementation of the above approach:

C++




// C++ program for the above approach
#include <bits/stdc++.h>
using namespace std;
 
// Function that returns the restored
// permutation
vector<int> restore(int arr[], int N)
{
    // Vector to store the result
    vector<int> result;
 
    // Map to mark the elements
    // which are taken in result
    map<int, int> mp;
    for (int i = 0; i < N; i++) {
 
        // Check if the element is
        // coming first time
        if (mp[arr[i]] == 0) {
 
            // Push in result vector
            result.push_back(arr[i]);
 
            // Mark it in the map
            mp[arr[i]]++;
        }
    }
 
    // Return the answer
    return result;
}
 
// Function to print the result
void print_result(vector<int> result)
{
    for (int i = 0; i < result.size(); i++)
        cout << result[i] << " ";
}
 
// Driver Code
int main()
{
    // Given Array
    int arr[] = { 1, 13, 1, 24, 13, 24, 2, 2 };
 
    int N = sizeof(arr) / sizeof(arr[0]);
 
    // Function Call
    print_result(restore(arr, N));
    return 0;
}


Java




// Java program for the above approach
import java.util.*;
class GFG{
 
// Function that returns the restored
// permutation
static Vector<Integer> restore(int arr[], int N)
{
    // Vector to store the result
    Vector<Integer> result = new Vector<>();
 
    // Map to mark the elements
    // which are taken in result
    HashMap<Integer,
            Integer> mp = new HashMap<Integer,
                                      Integer>();
    for (int i = 0; i < N; i++)
    {
 
        // Check if the element is
        // coming first time
        if (mp.containsKey(arr[i]) &&
            mp.get(arr[i]) == 0)
        {
 
            // Push in result vector
            result.add(arr[i]);
 
            // Mark it in the map
            if(mp.containsKey(arr[i]))
            {
                mp.put(arr[i], mp.get(arr[i]) + 1);
            }
            else
            {
                mp.put(arr[i], 1);
            }
        }
        else
            mp.put(arr[i], 0);
    }
 
    // Return the answer
    return result;
}
 
// Function to print the result
static void print_result(Vector<Integer> result)
{
    for (int i = 0; i < result.size(); i++)
        System.out.print(result.get(i) + " ");
}
 
// Driver Code
public static void main(String[] args)
{
    // Given Array
    int arr[] = { 1, 13, 1, 24, 13, 24, 2, 2 };
 
    int N = arr.length;
 
    // Function Call
    print_result(restore(arr, N));
}
}
 
// This code is contributed by Rajput-Ji


Python3




# Python3 program for the above approach
 
# Function that returns the restored
# permutation
def restore(arr, N):
     
    # List to store the result
    result = []
     
    # Map to mark the elements
    # which are taken in result
    mp = {}
     
    for i in range(N):
         
        # Checking if the element is
        # coming first time
        if not arr[i] in mp:
             
            # Push in result vector
            result.append(arr[i])
             
            # Mark it in the map
            mp[arr[i]] = 1
             
    # Return the answer
    return result
 
# Function to print the result
def print_result(result):
     
    for i in range(len(result)):
        print(result[i], end = " ")
         
# Driver code
def main():
     
    # Given array
    arr = [ 1, 13, 1, 24, 13, 24, 2, 2 ]
    N = len(arr)
     
    # Function call
    print_result(restore(arr, N))
     
main()
     
# This code is contributed by Stuti Pathak


C#




// C# program for the above approach
using System;
using System.Collections.Generic;
 
class GFG{
 
// Function that returns the restored
// permutation
static List<int> restore(int []arr, int N)
{
     
    // List to store the result
    List<int> result = new List<int>();
 
    // Map to mark the elements
    // which are taken in result
    Dictionary<int,
               int> mp = new Dictionary<int,
                                        int>();
    for(int i = 0; i < N; i++)
    {
         
        // Check if the element is
        // coming first time
        if (mp.ContainsKey(arr[i]) &&
            mp[arr[i]] == 0)
        {
             
            // Push in result vector
            result.Add(arr[i]);
 
            // Mark it in the map
            if(mp.ContainsKey(arr[i]))
            {
                mp[arr[i]] = mp[arr[i]] + 1;
            }
            else
            {
                mp.Add(arr[i], 1);
            }
        }
        else
            mp.Add(arr[i], 0);
    }
 
    // Return the answer
    return result;
}
 
// Function to print the result
static void print_result(List<int> result)
{
    for(int i = 0; i < result.Count; i++)
        Console.Write(result[i] + " ");
}
 
// Driver Code
public static void Main(String[] args)
{
     
    // Given Array
    int []arr = { 1, 13, 1, 24, 13, 24, 2, 2 };
 
    int N = arr.Length;
 
    // Function call
    print_result(restore(arr, N));
}
}
 
// This code is contributed by 29AjayKumar


Javascript




<script>
  
// Javascript program for the above approach
 
// Function that returns the restored
// permutation
function restore(arr, N)
{
    // Vector to store the result
    var result = [];
 
    // Map to mark the elements
    // which are taken in result
    var mp = new Map();
 
    for (var i = 0; i < N; i++) {
 
        // Check if the element is
        // coming first time
        if (!mp.has(arr[i])) {
 
            // Push in result vector
            result.push(arr[i]);
 
            // Mark it in the map
            mp.set(arr[i], mp.get(arr[i])+1);
        }
    }
 
    // Return the answer
    return result;
}
 
// Function to print the result
function print_result(result)
{
    for (var i = 0; i < result.length; i++)
    {
        document.write( result[i] + " ");
    }
         
}
 
// Driver Code
// Given Array
var arr = [1, 13, 1, 24, 13, 24, 2, 2];
var N = arr.length;
// Function Call
print_result(restore(arr, N));
 
</script>


Output: 

1 13 24 2

 

Time Complexity: O(N)
Auxiliary Space: O(N)

Using Set

  1. Traverse through the given sequence from left to right.
  2. A counter is taken and initialized as 1.
  3. Insert the elements into the set one by one. If at some point that the size of the set and the counter is the same, the element is taken into account and the counter is increased by 1.
  4. Step 3 and Step 4 is continued until the end of the given sequence is reached.

Below is the implementation of the above approach:

C++




// C++ program for the above approach
#include <bits/stdc++.h>
using namespace std;
 
// Function that returns the restored
// permutation
vector<int> restore(int arr[], int N)
{
    // Vector to store the result
    vector<int> result;
    int count1 = 1;
 
    // Set to insert unique elements
    set<int> s;
    for (int i = 0; i < N; i++) {
 
        s.insert(arr[i]);
 
        // Check if the element is
        // coming first time
        if (s.size() == count1) {
 
            // Push in result vector
            result.push_back(arr[i]);
 
            count1++;
        }
    }
 
    return result;
}
 
// Function to print the result
void print_result(vector<int> result)
{
    for (int i = 0; i < result.size(); i++)
        cout << result[i] << " ";
}
 
// Driver Code
int main()
{
    // Given Array
    int arr[] = { 1, 13, 1, 24, 13, 24, 2, 2 };
 
    int N = sizeof(arr) / sizeof(arr[0]);
 
    // Function Call
    print_result(restore(arr, N));
    return 0;
}


Java




// Java program for the above approach
import java.util.*;
 
class GFG{
 
// Function that returns the restored
// permutation
static Vector<Integer> restore(int arr[], int N)
{
     
    // Vector to store the result
    Vector<Integer> result = new Vector<Integer>();
     
    int count1 = 1;
 
    // Set to insert unique elements
    HashSet<Integer> s = new HashSet<Integer>();
     
    for(int i = 0; i < N; i++)
    {
        s.add(arr[i]);
 
        // Check if the element is
        // coming first time
        if (s.size() == count1)
        {
             
            // Push in result vector
            result.add(arr[i]);
            count1++;
        }
    }
    return result;
}
 
// Function to print the result
static void print_result(Vector<Integer> result)
{
    for(int i = 0; i < result.size(); i++)
        System.out.print(result.get(i) + " ");
}
 
// Driver Code
public static void main(String[] args)
{
     
    // Given Array
    int arr[] = { 1, 13, 1, 24, 13, 24, 2, 2 };
 
    int N = arr.length;
 
    // Function call
    print_result(restore(arr, N));
}
}
 
// This code is contributed by Princi Singh


Python3




# Python3 program for the
# above approach
 
# Function that returns the
# restored permutation
def restore(arr, N):
 
    # Vector to store the
    # result
    result = []
    count1 = 1
 
    # Set to insert unique
    # elements
    s = set([])
     
    for i in range(N):
        s.add(arr[i])
 
        # Check if the element is
        # coming first time
        if (len(s) == count1):
 
            # Push in result vector
            result.append(arr[i])
 
            count1 += 1
 
    return result
 
# Function to print the
# result
def print_result(result):
 
    for i in range(len(result)):
        print(result[i],
              end = " ")
 
# Driver Code
if __name__ == "__main__":
 
    # Given Array
    arr = [1, 13, 1, 24,
           13, 24, 2, 2]
 
    N = len(arr)
 
    # Function Call
    print_result(restore(arr, N))
 
# This code is contributed by Chitranayal


C#




// C# program for the above approach
using System;
using System.Collections.Generic;
class GFG{
 
// Function that returns the restored
// permutation
static List<int> restore(int []arr, int N)
{
     
    // List to store the result
    List<int> result = new List<int>();
     
    int count1 = 1;
 
    // Set to insert unique elements
    HashSet<int> s = new HashSet<int>();
     
    for(int i = 0; i < N; i++)
    {
        s.Add(arr[i]);
 
        // Check if the element is
        // coming first time
        if (s.Count == count1)
        {
             
            // Push in result vector
            result.Add(arr[i]);
            count1++;
        }
    }
    return result;
}
 
// Function to print the result
static void print_result(List<int> result)
{
    for(int i = 0; i < result.Count; i++)
        Console.Write(result[i] + " ");
}
 
// Driver Code
public static void Main(String[] args)
{
     
    // Given Array
    int []arr = { 1, 13, 1, 24, 13, 24, 2, 2 };
 
    int N = arr.Length;
 
    // Function call
    print_result(restore(arr, N));
}
}
 
// This code is contributed by PrinciRaj1992


Javascript




<script>
 
// Javascript program for the above approach
 
// Function that returns the restored
// permutation
function restore(arr, N)
{
     
    // Vector to store the result
    let result = [];
      
    let count1 = 1;
  
    // Set to insert unique elements
    let s = new Set();
      
    for(let i = 0; i < N; i++)
    {
        s.add(arr[i]);
  
        // Check if the element is
        // coming first time
        if (s.size == count1)
        {
             
            // Push in result vector
            result.push(arr[i]);
            count1++;
        }
    }
    return result;
}
 
// Function to print the result
function print_result(result)
{
    for(let i = 0; i < result.length; i++)
        document.write(result[i] + " ");
}
 
// Driver Code
let arr = [ 1, 13, 1, 24, 13, 24, 2, 2 ];
let N = arr.length;
 
// Function call
print_result(restore(arr, N));
 
// This code is contributed by avanitrachhadiya2155
 
</script>


Output: 

1 13 24 2

 

Time Complexity: O(N)
Auxiliary Space: O(N)

Feeling lost in the world of random DSA topics, wasting time without progress? It’s time for a change! Join our DSA course, where we’ll guide you on an exciting journey to master DSA efficiently and on schedule.
Ready to dive in? Explore our Free Demo Content and join our DSA course, trusted by over 100,000 neveropen!

RELATED ARTICLES

Most Popular

Recent Comments