Given an array of length N, the task is to find minimum operation required to make all elements in the array equal.
Operation is as follows:
- Replace the value of one element of the array by one of its adjacent elements.
Examples:
Input: N = 4, arr[] = {2, 3, 3, 4} Output: 2 Explanation: Replace 2 and 4 by 3 Input: N = 4, arr[] = { 1, 2, 3, 4} Output: 3
Approach:
Let us assume that after performing the required minimum changes all elements of the array will become X. It is given that we are only allowed to replace the value of an element of the array with its adjacent element, So X should be one of the elements of the array.
Also, as we need to make changes as minimum as possible X should be the maximum occurring element of the array. Once we find the value of X, we need only one change per non-equal element (elements which are not X) to make all elements of the array equal to X.
- Find the count of the maximum occurring element of the array.
- Minimum changes required to make all elements of the array equal is
count of all elements – count of maximum occurring element
Below is the implementation of the above approach:
CPP
// C++ program to find minimum // changes required to make // all elements of the array equal #include <bits/stdc++.h> using namespace std; // Function to count // of minimum changes // required to make all // elements equal int minChanges( int arr[], int n) { unordered_map< int , int > umap; // Store the count of // each element as key // value pair in unordered map for ( int i = 0; i < n; i++) { umap[arr[i]]++; } int maxFreq = 0; // Find the count of // maximum occurring element for ( auto p : umap) { maxFreq = max(maxFreq, p.second); } // Return count of all // element minus count // of maximum occurring element return n - maxFreq; } // Driver code int main() { int arr[] = { 2, 3, 3, 4 }; int n = sizeof (arr) / sizeof (arr[0]); // Function call cout << minChanges(arr, n) << '\n' ; return 0; } |
Java
// Java program to find minimum // changes required to make // all elements of the array equal import java.util.*; class GFG { // Function to count of minimum changes // required to make all elements equal static int minChanges( int arr[], int n) { Map<Integer, Integer> mp = new HashMap<>(); // Store the count of each element // as key value pair in map for ( int i = 0 ; i < n; i++) { if (mp.containsKey(arr[i])) { mp.put(arr[i], mp.get(arr[i]) + 1 ); } else { mp.put(arr[i], 1 ); } } int maxElem = 0 ; // Traverse through map and // find the maximum occurring element for (Map.Entry<Integer, Integer> entry : mp.entrySet()) { maxElem = Math.max(maxElem, entry.getValue()); } // Return count of all element minus // count of maximum occurring element return n - maxElem; } // Driver code public static void main(String[] args) { int arr[] = { 2 , 3 , 3 , 4 }; int n = arr.length; // Function call System.out.println(minChanges(arr, n)); } } |
C#
// C# program to find minimum // changes required to make // all elements of the array equal using System; using System.Collections.Generic; class GFG { // Function to count of minimum changes // required to make all elements equal static int minChanges( int [] arr, int n) { Dictionary< int , int > mp = new Dictionary< int , int >(); // Store the count of each element // as key-value pair in Dictionary for ( int i = 0; i < n; i++) { if (mp.ContainsKey(arr[i])) { var val = mp[arr[i]]; mp.Remove(arr[i]); mp.Add(arr[i], val + 1); } else { mp.Add(arr[i], 1); } } int maxElem = 0; // Traverse through the Dictionary and // find the maximum occurring element foreach (KeyValuePair< int , int > entry in mp) { maxElem = Math.Max(maxElem, entry.Value); } // Return count of all element minus // count of maximum occurring element return n - maxElem; } // Driver code public static void Main( string [] args) { int [] arr = { 2, 3, 3, 4 }; int n = arr.Length; // Function call Console.WriteLine(minChanges(arr, n)); } } |
Python3
# Python3 program to find minimum # changes required to make # all elements of the array equal # Function to count of minimum changes # required to make all elements equal def minChanges(arr, n): mp = dict () # Store the count of each element # as key-value pair in Dictionary for i in range (n): if arr[i] in mp.keys(): mp[arr[i]] + = 1 else : mp[arr[i]] = 1 maxElem = 0 # Traverse through the Dictionary and # find the maximum occurring element for x in mp: maxElem = max (maxElem, mp[x]) # Return count of all element minus # count of maximum occurring element return n - maxElem # Driver code arr = [ 2 , 3 , 3 , 4 ] n = len (arr) # Function call print (minChanges(arr, n)) |
Javascript
<script> // Javascript program to find minimum // changes required to make // all elements of the array equal // Function to count // of minimum changes // required to make all // elements equal function minChanges( arr, n) { var umap = new Map(); // Store the count of // each element as key // value pair in unordered map for ( var i = 0; i < n; i++) { if (umap.has(arr[i])) { umap.set(arr[i], umap.get(arr[i])+1); } else { umap.set(arr[i], 1); } } var maxFreq = 0; // Find the count of // maximum occurring element umap.forEach((values,keys)=>{ maxFreq = Math.max(maxFreq, values); }); // Return count of all // element minus count // of maximum occurring element return n - maxFreq; } // Driver code var arr = [ 2, 3, 3, 4 ]; var n = arr.length; // Function call document.write( minChanges(arr, n) + '<br>' ); </script> |
2
Time Complexity: O(n)
Auxiliary Space: O(n)
Ready to dive in? Explore our Free Demo Content and join our DSA course, trusted by over 100,000 neveropen!