Sunday, January 12, 2025
Google search engine
HomeData Modelling & AIQueries for maximum difference between prime numbers in given ranges

Queries for maximum difference between prime numbers in given ranges

Given n queries of the form range [L, R]. The task is to find the maximum difference between two prime numbers in the range for each query. If there are no prime in the range then print 0. All ranges are below 100005.

Examples: 

Input : Q = 3
        query1 = [2, 5]
        query2 = [2, 2]
        query3 = [24, 28]
Output : 3
         0
         0
In first query, 2 and 5 are prime number 
in the range with maximum difference which 
is 3. In second there 
is only 1 prime number in range, so output
is 0. And in third query, there is no prime number in the given range so the output is 0.

The idea is to compute Prime numbers using Sieve of Eratosthenes along with some precomputing. 

Below are the step to solve the question: 
Step 1: Find the prime numbers using Sieve of Eratosthenes algorithm. 
Step 2: Make an array, let say prefix[], where prefix[i] represents largest prime number smaller or equal to i. 
Step 3: Make an array, let say suffix[], where suffix[i] represents smallest prime number greater or equal to i. 
Step 4: Now for each query having [L, R], do the following:

  if (prefix[R]  R)
    return 0;
  else
    return prefix[R] - suffix[L];

Below is the implementation of this approach:  

C++




// CPP program to find maximum differences between
// two prime numbers in given ranges
#include <bits/stdc++.h>
using namespace std;
#define MAX 100005
 
// Declare global variables to assign heap memory and avoid
// stack overflow
bool prime[MAX];
int prefix[MAX], suffix[MAX];
 
// Precompute Sieve, Prefix array, Suffix array
void precompute(int prefix[], int suffix[])
{
    memset(prime, true, sizeof(prime));
 
    // Sieve of Eratosthenes
    for (int i = 2; i * i < MAX; i++) {
        if (prime[i]) {
            for (int j = i * i; j < MAX; j += i)
                prime[j] = false;
        }
    }
 
    prefix[1] = 1;
    suffix[MAX - 1] = 1e9 + 7;
 
    // Precomputing Prefix array.
    for (int i = 2; i < MAX; i++) {
        if (prime[i])
            prefix[i] = i;
        else
            prefix[i] = prefix[i - 1];
    }
 
    // Precompute Suffix array.
    for (int i = MAX - 1; i > 1; i--) {
        if (prime[i])
            suffix[i] = i;
        else
            suffix[i] = suffix[i + 1];
    }
}
 
// Function to solve each query
int query(int prefix[], int suffix[], int L, int R)
{
    if (prefix[R] < L || suffix[L] > R)
        return 0;
    else
        return prefix[R] - suffix[L];
}
 
// Driven Program
int main()
{
    int q = 3;
    int L[] = { 2, 2, 24 };
    int R[] = { 5, 2, 28 };
 
    precompute(prefix, suffix);
 
    for (int i = 0; i < q; i++)
        cout << query(prefix, suffix, L[i], R[i]) << endl;
 
    return 0;
}


Java




// Java program to find maximum differences between
// two prime numbers in given ranges
 
public class GFG {
 
    final static int MAX = 100005;
 
    // Precompute Sieve, Prefix array, Suffix array
    static void precompute(int prefix[], int suffix[])
    {
        boolean prime[] = new boolean[MAX];
        for (int i = 0; i < MAX; i++) {
            prime[i] = true;
        }
 
        // Sieve of Eratosthenes
        for (int i = 2; i * i < MAX; i++) {
            if (prime[i]) {
                for (int j = i * i; j < MAX; j += i) {
                    prime[j] = false;
                }
            }
        }
 
        prefix[1] = 1;
        suffix[MAX - 1] = (int)1e9 + 7;
 
        // Precomputing Prefix array.
        for (int i = 2; i < MAX; i++) {
            if (prime[i]) {
                prefix[i] = i;
            }
            else {
                prefix[i] = prefix[i - 1];
            }
        }
 
        // Precompute Suffix array.
        for (int i = MAX - 2; i > 1; i--) {
            if (prime[i]) {
                suffix[i] = i;
            }
            else {
                suffix[i] = suffix[i + 1];
            }
        }
    }
 
    // Function to solve each query
    static int query(int prefix[], int suffix[], int L,
                     int R)
    {
        if (prefix[R] < L || suffix[L] > R) {
            return 0;
        }
        else {
            return prefix[R] - suffix[L];
        }
    }
 
    // Driven Program
    public static void main(String[] args)
    {
        int q = 3;
        int L[] = { 2, 2, 24 };
        int R[] = { 5, 2, 28 };
 
        int prefix[] = new int[MAX], suffix[]
                                     = new int[MAX];
        precompute(prefix, suffix);
 
        for (int i = 0; i < q; i++) {
            System.out.println(
                query(prefix, suffix, L[i], R[i]));
        }
    }
}
/*This code is contributed by Rajput-Ji*/


Python3




# Python 3 program to find maximum
# differences between two prime numbers
# in given ranges
from math import sqrt
 
MAX = 100005
 
# Precompute Sieve, Prefix array, Suffix array
def precompute(prefix, suffix):
    prime = [True for i in range(MAX)]
 
    # Sieve of Eratosthenes
    k = int(sqrt(MAX))
    for i in range(2, k, 1):
        if (prime[i]):
            for j in range(i * i, MAX, i):
                prime[j] = False
 
    prefix[1] = 1
    suffix[MAX - 1] = int(1e9 + 7)
 
    # Precomputing Prefix array.
    for i in range(2, MAX, 1):
        if (prime[i]):
            prefix[i] = i
        else:
            prefix[i] = prefix[i - 1]
 
    # Precompute Suffix array.
    i = MAX - 2
    while(i > 1):
        if (prime[i]):
            suffix[i] = i
        else:
            suffix[i] = suffix[i + 1]
        i -= 1
 
# Function to solve each query
 
 
def query(prefix, suffix, L, R):
    if (prefix[R] < L or suffix[L] > R):
        return 0
    else:
        return prefix[R] - suffix[L]
 
 
# Driver Code
if __name__ == '__main__':
    q = 3
    L = [2, 2, 24]
    R = [5, 2, 28]
 
    prefix = [0 for i in range(MAX)]
    suffix = [0 for i in range(MAX)]
    precompute(prefix, suffix)
 
    for i in range(0, q, 1):
        print(query(prefix, suffix,
                    L[i], R[i]))
 
# This code is contributed by
# Surendra_Gangwar


C#




// C# program to find maximum differences between
// two prime numbers in given ranges
using System;
 
public class GFG {
 
    static readonly int MAX = 100005;
 
    // Precompute Sieve, Prefix array, Suffix array
    static void precompute(int[] prefix, int[] suffix)
    {
        bool[] prime = new bool[MAX];
        for (int i = 0; i < MAX; i++) {
            prime[i] = true;
        }
 
        // Sieve of Eratosthenes
        for (int i = 2; i * i < MAX; i++) {
            if (prime[i]) {
                for (int j = i * i; j < MAX; j += i) {
                    prime[j] = false;
                }
            }
        }
 
        prefix[1] = 1;
        suffix[MAX - 1] = (int)1e9 + 7;
 
        // Precomputing Prefix array.
        for (int i = 2; i < MAX; i++) {
            if (prime[i]) {
                prefix[i] = i;
            }
            else {
                prefix[i] = prefix[i - 1];
            }
        }
 
        // Precompute Suffix array.
        for (int i = MAX - 2; i > 1; i--) {
            if (prime[i]) {
                suffix[i] = i;
            }
            else {
                suffix[i] = suffix[i + 1];
            }
        }
    }
 
    // Function to solve each query
    static int query(int[] prefix, int[] suffix, int L,
                     int R)
    {
        if (prefix[R] < L || suffix[L] > R) {
            return 0;
        }
        else {
            return prefix[R] - suffix[L];
        }
    }
 
    // Driven Program
    public static void Main()
    {
        int q = 3;
        int[] L = { 2, 2, 24 };
        int[] R = { 5, 2, 28 };
 
        int[] prefix = new int[MAX];
        int[] suffix = new int[MAX];
        precompute(prefix, suffix);
 
        for (int i = 0; i < q; i++) {
            Console.WriteLine(
                query(prefix, suffix, L[i], R[i]));
        }
    }
}
 
/*This code is contributed by 29AjayKumar*/


PHP




<?php
// PHP program to find maximum differences
// between two prime numbers in given ranges
$MAX = 100005;
 
// Precompute Sieve, Prefix array,
// Suffix array
function precompute(&$prefix, &$suffix)
{
    global $MAX;
    $prime = array_fill(0, $MAX, true);
 
    // Sieve of Eratosthenes
    for ($i = 2; $i * $i < $MAX; $i++)
    {
        if ($prime[$i])
        {
            for ($j = $i * $i;
                 $j < $MAX; $j += $i)
                $prime[$j] = false;
        }
    }
 
    $prefix[1] = 1;
    $suffix[$MAX - 1] = 1e9 + 7;
 
    // Precomputing Prefix array.
    for ($i = 2; $i < $MAX; $i++)
    {
        if ($prime[$i])
            $prefix[$i] = $i;
        else
            $prefix[$i] = $prefix[$i - 1];
    }
 
    // Precompute Suffix array.
    for ($i = $MAX - 1; $i > 1; $i--)
    {
        if ($prime[$i])
            $suffix[$i] = $i;
        else
            $suffix[$i] = $suffix[$i + 1];
    }
}
 
// Function to solve each query
function query($prefix, $suffix, $L, $R)
{
    if ($prefix[$R] < $L || $suffix[$L] > $R)
        return 0;
    else
        return $prefix[$R] - $suffix[$L];
}
 
// Driver Code
$q = 3;
$L = array( 2, 2, 24 );
$R = array( 5, 2, 28 );
 
$prefix = array_fill(0, $MAX + 1, 0);
$suffix = array_fill(0, $MAX + 1, 0);
precompute($prefix, $suffix);
 
for ($i = 0; $i < $q; $i++)
    echo query($prefix, $suffix,
               $L[$i], $R[$i]) . "\n";
 
// This code is contributed by mits
?>


Javascript




<script>
 
// JavaScript program to find maximum
// differences between two prime
// numbers in given ranges
 
let MAX = 100005;
  
// Precompute Sieve, Prefix array, Suffix array
function precompute(prefix, suffix)
{
    let prime = [];
    for(let i = 0; i < MAX; i++)
    {
        prime[i] = true;
    }
 
    // Sieve of Eratosthenes
    for(let i = 2; i * i < MAX; i++)
    {
        if (prime[i])
        {
            for(let j = i * i; j < MAX; j += i)
            {
                prime[j] = false;
            }
        }
    }
 
    prefix[1] = 1;
    suffix[MAX - 1] = 1e9 + 7;
 
    // Precomputing Prefix array.
    for(let i = 2; i < MAX; i++)
    {
        if (prime[i])
        {
            prefix[i] = i;
        }
        else
        {
            prefix[i] = prefix[i - 1];
        }
    }
 
    // Precompute Suffix array.
    for(let i = MAX - 2; i > 1; i--)
    {
        if (prime[i])
        {
            suffix[i] = i;
        }
        else
        {
            suffix[i] = suffix[i + 1];
        }
    }
}
 
// Function to solve each query
function query(prefix, suffix, L, R)
{
    if (prefix[R] < L || suffix[L] > R)
    {
        return 0;
    }
    else
    {
        return prefix[R] - suffix[L];
    }
}
 
// Driver Code
let q = 3;
let L = [ 2, 2, 24 ];
let R = [ 5, 2, 28 ];
let prefix = [], suffix = [];
 
precompute(prefix, suffix);
 
for(let i = 0; i < q; i++)
{
    document.write(query(prefix, suffix,
                         L[i], R[i]) + "<br/>");
}
 
// This code is contributed by sanjoy_62
 
</script>


Output: 

3
0
0 

Feeling lost in the world of random DSA topics, wasting time without progress? It’s time for a change! Join our DSA course, where we’ll guide you on an exciting journey to master DSA efficiently and on schedule.
Ready to dive in? Explore our Free Demo Content and join our DSA course, trusted by over 100,000 neveropen!

RELATED ARTICLES

Most Popular

Recent Comments