Monday, January 13, 2025
Google search engine
HomeData Modelling & AIEstimating the value of Pi using Monte Carlo | Parallel Computing Method

Estimating the value of Pi using Monte Carlo | Parallel Computing Method

Given two integers N and K representing number of trials and number of total threads in parallel processing. The task is to find the estimated value of PI using the Monte Carlo algorithm using the Open Multi-processing (OpenMP) technique of parallelizing sections of the program.

Examples:

Input: N = 100000, K = 8 
Output: Final Estimation of Pi = 3.146600

Input: N = 10, K = 8
Output: Final Estimation of Pi = 3.24

Input: N = 100, K = 8
Output: Final Estimation of Pi = 3.0916

Approach: The above given problem Estimating the value of Pi using Monte Carlo is already been solved using standard algorithm. Here the idea is to use parallel computing using OpenMp to solve the problem. Follow the steps below to solve the problem:

  • Initialize 3 variables say x, y, and d to store the X and Y co-ordinates of a random point and the square of the distance of the random point from origin.
  • Initialize 2 variables say pCircle and pSquare with values 0 to store the points lying inside circle of radius 0.5 and square of side length 1.
  • Now starts the parallel processing with OpenMp together with reduction() of the following section:
    • Iterate over the range [0, N] and find x and y in each iteration using srand48() and drand48() then find the square of distance of point (x, y) from origin and then if the distance is less than or equal to 1 then increment pCircle by 1.
    • In each iteration of the above step, increment the count of pSquare by 1.
  • Finally, after the above step calculate the value of estimated pi as below and then print the obtained value.
    •  Pi = 4.0 * ((double)pCircle / (double)(pSquare))

Below is the implementation of the above approach:

C++




// C++ program for the above approach
#include <iostream>
using namespace std;
 
// Function to find estimated
// value of PI using Monte
// Carlo algorithm
void monteCarlo(int N, int K)
{
   
    // Stores X and Y coordinates
    // of a random point
    double x, y;
   
    // Stores distance of a random
    // point from origin
    double d;
 
    // Stores number of points
    // lying inside circle
    int pCircle = 0;
 
    // Stores number of points
    // lying inside square
    int pSquare = 0;
    int i = 0;
 
// Parallel calculation of random
// points lying inside a circle
#pragma omp parallel firstprivate(x, y, d, i) reduction(+ : pCircle, pSquare) num_threads(K)
    {
       
        // Initializes random points
        // with a seed
        srand48((int)time(NULL));
 
        for (i = 0; i < N; i++)
        {
           
            // Finds random X co-ordinate
            x = (double)drand48();
 
            // Finds random X co-ordinate
            y = (double)drand48();
 
            // Finds the square of distance
            // of point (x, y) from origin
            d = ((x * x) + (y * y));
 
            // If d is less than or
            // equal to 1
            if (d <= 1)
            {
               
                // Increment pCircle by 1
                pCircle++;
            }
           
            // Increment pSquare by 1
            pSquare++;
        }
    }
   
    // Stores the estimated value of PI
    double pi = 4.0 * ((double)pCircle / (double)(pSquare));
 
    // Prints the value in pi
    cout << "Final Estimation of Pi = "<< pi;
}
 
// Driver Code
int main()
{
   
    // Input
    int N = 100000;
    int K = 8;
   
    // Function call
    monteCarlo(N, K);
}
 
// This code is contributed by shivanisinghss2110


C




// C program for the above approach
 
#include <omp.h>
#include <stdio.h>
#include <stdlib.h>
#include <time.h>
 
// Function to find estimated
// value of PI using Monte
// Carlo algorithm
void monteCarlo(int N, int K)
{
    // Stores X and Y coordinates
    // of a random point
    double x, y;
    // Stores distance of a random
    // point from origin
    double d;
 
    // Stores number of points
    // lying inside circle
    int pCircle = 0;
 
    // Stores number of points
    // lying inside square
    int pSquare = 0;
 
    int i = 0;
 
// Parallel calculation of random
// points lying inside a circle
#pragma omp parallel firstprivate(x, y, d, i) reduction(+ : pCircle, pSquare) num_threads(K)
    {
        // Initializes random points
        // with a seed
        srand48((int)time(NULL));
 
        for (i = 0; i < N; i++) {
            // Finds random X co-ordinate
            x = (double)drand48();
 
            // Finds random X co-ordinate
            y = (double)drand48();
 
            // Finds the square of distance
            // of point (x, y) from origin
            d = ((x * x) + (y * y));
 
            // If d is less than or
            // equal to 1
            if (d <= 1) {
                // Increment pCircle by 1
                pCircle++;
            }
            // Increment pSquare by 1
            pSquare++;
        }
    }
    // Stores the estimated value of PI
    double pi = 4.0 * ((double)pCircle / (double)(pSquare));
 
    // Prints the value in pi
    printf("Final Estimation of Pi = %f\n", pi);
}
 
// Driver Code
int main()
{
    // Input
    int N = 100000;
    int K = 8;
    // Function call
    monteCarlo(N, K);
}


Java




// Java implementation of the approach
 
import java.util.*;
 
class GFG {
 
  // Function to find estimated
  // value of PI using Monte
  // Carlo algorithm
  static void monteCarlo(int N, int K)
  {
    // Stores X and Y coordinates
    // of a random point
    double x, y;
 
    // Stores distance of a random
    // point from origin
    double d;
 
    // Stores number of points
    // lying inside circle
    int pCircle = 0;
 
    // Stores number of points
    // lying inside square
    int pSquare = 0;
 
    // Initializes random points
    // with a seed
    Random rand = new Random();
 
    // Loop through each iteration
    for (int i = 0; i < N; i++) {
      // Finds random X co-ordinate
      x = rand.nextDouble();
 
      // Finds random Y co-ordinate
      y = rand.nextDouble();
 
      // Finds the square of distance
      // of point (x, y) from origin
      d = ((x * x) + (y * y));
 
      // If d is less than or equal to 1
      if (d <= 1) {
        // Increment pCircle by 1
        pCircle++;
      }
 
      // Increment pSquare by 1
      pSquare++;
    }
 
    // Stores the estimated value of PI
    double pi
      = 4.0 * ((double)pCircle / (double)(pSquare));
 
    // Prints the value of pi
    System.out.println("Final Estimation of Pi = "
                       + pi);
  }
 
  // Driver Code
  public static void main(String[] args)
  {
    // Input
    int N = 100000;
    int K = 8;
 
    // Function call
    monteCarlo(N, K);
  }
}
 
// This code is contributed by phasing17


Python3




# Python3 program for the above approach
import random
import time
 
# Function to find estimated
# value of PI using Monte
# Carlo algorithm
def monteCarlo(N, K):
 
    # Stores X and Y coordinates
    # of a random point
    x = 0
    y = 0
     
    # Stores distance of a random
    # point from origin
    d = 0
     
    # Stores number of points
    # lying inside circle
    pCircle = 0
     
    # Stores number of points
    # lying inside square
    pSquare = 0
     
    # Initializes random points
    # with a seed
    random.seed(time.time())
     
    for i in range(N):
     
        # Finds random X co-ordinate
        x = random.random()
     
        # Finds random X co-ordinate
        y = random.random()
     
        # Finds the square of distance
        # of point (x, y) from origin
        d = (x * x) + (y * y)
     
        # If d is less than or
        # equal to 1
        if d <= 1:
            # Increment pCircle by 1
            pCircle += 1
     
        # Increment pSquare by 1
        pSquare += 1
 
        # Stores the estimated value of PI
        pi = 4.0 * (pCircle / pSquare)
         
    # Prints the value in pi
    print("Final Estimation of Pi = ", pi)
 
# Driver Code
 
# Input
N = 100000
K = 8
 
# Function call
monteCarlo(N, K)
 
# This code is contributed by phasing17.


C#




// C# equivalent of the above code
using System;
 
namespace MonteCarloPi {
  class GFG
  {
     
    // Function to find estimated
    // value of PI using Monte
    // Carlo algorithm
    static void monteCarlo(int N, int K)
    {
      // Stores X and Y coordinates
      // of a random point
      double x, y;
 
      // Stores distance of a random
      // point from origin
      double d;
 
      // Stores number of points
      // lying inside circle
      int pCircle = 0;
 
      // Stores number of points
      // lying inside square
      int pSquare = 0;
 
      // Initializes random points
      // with a seed
      Random rand = new Random();
 
      // Loop through each iteration
      for (int i = 0; i < N; i++) {
        // Finds random X co-ordinate
        x = rand.NextDouble();
 
        // Finds random Y co-ordinate
        y = rand.NextDouble();
 
        // Finds the square of distance
        // of point (x, y) from origin
        d = ((x * x) + (y * y));
 
        // If d is less than or equal to 1
        if (d <= 1) {
          // Increment pCircle by 1
          pCircle++;
        }
 
        // Increment pSquare by 1
        pSquare++;
      }
 
      // Stores the estimated value of PI
      double pi
        = 4.0 * ((double)pCircle / (double)(pSquare));
 
      // Prints the value of pi
      Console.WriteLine("Final Estimation of Pi = " + pi);
    }
 
    // Driver Code
    static void Main(string[] args)
    {
      // Input
      int N = 100000;
      int K = 8;
 
      // Function call
      monteCarlo(N, K);
    }
  }
}
 
// This code is contributed by phasing17


Javascript




// JS program for the above approach
 
// Function to find estimated value of PI using Monte Carlo algorithm
function monteCarlo(N, K) {
    // Stores X and Y coordinates of a random point
    let x = 0;
    let y = 0;
     
     
    // Stores distance of a random point from origin
    let d = 0;
     
    // Stores number of points lying inside circle
    let pCircle = 0;
     
    // Stores number of points lying inside square
    let pSquare = 0;
     
    let pi;
     
    for (let i = 0; i < N; i++) {
        // Finds random X co-ordinate
        x = Math.random();
     
        // Finds random Y co-ordinate
        y = Math.random();
     
        // Finds the square of distance of point (x, y) from origin
        d = (x * x) + (y * y);
     
        // If d is less than or equal to 1
        if (d <= 1) {
            // Increment pCircle by 1
            pCircle++;
        }
     
        // Increment pSquare by 1
        pSquare++;
     
        // Stores the estimated value of PI
        pi = 4.0 * (pCircle / pSquare);
    }
     
    // Prints the value of pi
    console.log("Final Estimation of Pi = " + pi);
}
 
// Driver Code
 
// Input
const N = 100000;
const K = 8;
 
// Function call
monteCarlo(N, K);
 
// This code is contributed by phasing17.


Output

Final Estimation of Pi = 3.146600

Output of above C program

Time Complexity: O(N*K)
Auxiliary Space: O(1)

 

Feeling lost in the world of random DSA topics, wasting time without progress? It’s time for a change! Join our DSA course, where we’ll guide you on an exciting journey to master DSA efficiently and on schedule.
Ready to dive in? Explore our Free Demo Content and join our DSA course, trusted by over 100,000 neveropen!

RELATED ARTICLES

Most Popular

Recent Comments