Friday, December 27, 2024
Google search engine
HomeData Modelling & AILength of longest subarray with increasing contiguous elements

Length of longest subarray with increasing contiguous elements

Given an array arr[] of length N, the task is to find the length of the longest subarray which consists of consecutive numbers in increasing order, from the array.

Examples:

Input: arr[] = {2, 3, 4, 6, 7, 8, 9, 10}
Output: 5
Explanation: Subarray {6, 7, 8, 9, 10} is the longest subarray satisfying the given conditions. Therefore, the required output is 5.

Input: arr[] = {4, 5, 1, 2, 3, 4, 9, 10, 11, 12}
Output: 4

Naive Approach: The simplest approach to solve the problem is to traverse the array and for every index i, traverse from over-index and find the length of the longest subarray satisfying the given condition starting from i. Shift i to the index which does not satisfy the condition and check from that index. Finally, print the maximum length of such subarray obtained.

Below is the implementation of the above approach: 

C++




// C++ implementation for the above approach
#include <bits/stdc++.h>
using namespace std;
 
// Function to find the longest subarray
// with increasing contiguous elements
int maxiConsecutiveSubarray(int arr[], int N)
{
 
    // Stores the length of
    // required longest subarray
    int maxi = 0;
 
    for (int i = 0; i < N - 1; i++) {
 
        // Stores the length of length of longest
        // such subarray from ith index
        int cnt = 1, j;
 
        for (j = i; j < N; j++) {
 
            // If consecutive elements are
            // increasing and differ by 1
            if (arr[j + 1] == arr[j] + 1) {
                cnt++;
            }
 
            // Otherwise
            else {
                break;
            }
        }
 
        // Update the longest subarray
        // obtained so far
        maxi = max(maxi, cnt);
        i = j;
    }
 
    // Return the length obtained
    return maxi;
}
 
// Driver Code
int main()
{
    int N = 11;
    int arr[] = { 1, 3, 4, 2, 3, 4,
                  2, 3, 5, 6, 7 };
 
    cout << maxiConsecutiveSubarray(arr, N);
    return 0;
}


Java




// Java implementation for the above approach
import java.util.*;
 
class GFG{
     
// Function to find the longest subarray
// with increasing contiguous elements
public static int maxiConsecutiveSubarray(int arr[],
                                          int N)
{
     
    // Stores the length of
    // required longest subarray
    int maxi = 0;
 
    for(int i = 0; i < N - 1; i++)
    {
         
        // Stores the length of length of
        // longest such subarray from ith
        // index
        int cnt = 1, j;
 
        for(j = i; j < N - 1; j++)
        {
             
            // If consecutive elements are
            // increasing and differ by 1
            if (arr[j + 1] == arr[j] + 1)
            {
                cnt++;
            }
 
            // Otherwise
            else
            {
                break;
            }
        }
 
        // Update the longest subarray
        // obtained so far
        maxi = Math.max(maxi, cnt);
        i = j;
    }
 
    // Return the length obtained
    return maxi;
}
 
// Driver Code
public static void main(String args[])
{
    int N = 11;
    int arr[] = { 1, 3, 4, 2, 3, 4,
                  2, 3, 5, 6, 7 };
 
    System.out.println(maxiConsecutiveSubarray(arr, N));
}
}
 
// This code is contributed by hemanth gadarla


Python3




# Python3 implementation for
# the above approach
 
# Function to find the longest
# subarray with increasing
# contiguous elements
def maxiConsecutiveSubarray(arr, N):
   
    # Stores the length of
    # required longest subarray
    maxi = 0;
 
    for i in range(N - 1):
        # Stores the length of
        # length of longest such
        # subarray from ith index
        cnt = 1;
 
        for j in range(i, N - 1):
 
            # If consecutive elements are
            # increasing and differ by 1
            if (arr[j + 1] == arr[j] + 1):
                cnt += 1;
 
            # Otherwise
            else:
                break;
 
        # Update the longest subarray
        # obtained so far
        maxi = max(maxi, cnt);
        i = j;
 
    # Return the length obtained
    return maxi;
 
# Driver Code
if __name__ == '__main__':
   
    N = 11;
    arr = [1, 3, 4, 2, 3,
           4, 2, 3, 5, 6, 7];
 
    print(maxiConsecutiveSubarray(arr, N));
 
# This code is contributed by Rajput-Ji


C#




// C# implementation for the
// above approach
using System;
class GFG{
     
// Function to find the longest
// subarray with increasing
// contiguous elements
public static int maxiConsecutiveSubarray(int []arr,
                                          int N)
{   
  // Stores the length of
  // required longest subarray
  int maxi = 0;
 
  for(int i = 0; i < N - 1; i++)
  {
    // Stores the length of
    // length of longest such
    // subarray from ith index
    int cnt = 1, j;
 
    for(j = i; j < N - 1; j++)
    {
      // If consecutive elements are
      // increasing and differ by 1
      if (arr[j + 1] == arr[j] + 1)
      {
        cnt++;
      }
 
      // Otherwise
      else
      {
        break;
      }
    }
 
    // Update the longest subarray
    // obtained so far
    maxi = Math.Max(maxi, cnt);
    i = j;
  }
 
  // Return the length
  // obtained
  return maxi;
}
 
// Driver Code
public static void Main(String []args)
{
  int N = 11;
  int []arr = {1, 3, 4, 2, 3, 4,
               2, 3, 5, 6, 7};
  Console.WriteLine(
          maxiConsecutiveSubarray(arr, N));
}
}
 
// This code is contributed by 29AjayKumar


Javascript




<script>
// Javascript program to implement
// the above approach
 
// Function to find the longest subarray
// with increasing contiguous elements
function maxiConsecutiveSubarray(arr, N)
{
      
    // Stores the length of
    // required longest subarray
    let maxi = 0;
  
    for(let i = 0; i < N - 1; i++)
    {
          
        // Stores the length of length of
        // longest such subarray from ith
        // index
        let cnt = 1, j;
  
        for(j = i; j < N - 1; j++)
        {
              
            // If consecutive elements are
            // increasing and differ by 1
            if (arr[j + 1] == arr[j] + 1)
            {
                cnt++;
            }
  
            // Otherwise
            else
            {
                break;
            }
        }
  
        // Update the longest subarray
        // obtained so far
        maxi = Math.max(maxi, cnt);
        i = j;
    }
  
    // Return the length obtained
    return maxi;
}
 
    // Driver Code
     
    let  N = 11;
    let arr = [ 1, 3, 4, 2, 3, 4,
                  2, 3, 5, 6, 7 ];
  
    document.write(maxiConsecutiveSubarray(arr, N));
     
</script>


Output

3

Time Complexity: O(N2
Auxiliary Space: O(1)

Feeling lost in the world of random DSA topics, wasting time without progress? It’s time for a change! Join our DSA course, where we’ll guide you on an exciting journey to master DSA efficiently and on schedule.
Ready to dive in? Explore our Free Demo Content and join our DSA course, trusted by over 100,000 neveropen!

RELATED ARTICLES

Most Popular

Recent Comments