Tuesday, November 19, 2024
Google search engine
HomeData Modelling & AICount numbers less than N containing digits from the given set :...

Count numbers less than N containing digits from the given set : Digit DP

Given an integer N and set of digits D[], which consists of digits from [1, 9]. The task is to count the numbers possible less than N, whose digits are from the given set of digits.

Examples: 

Input: D = [“1”, “4”, “9”], N = 10 
Output:
Explanation: 
There are only 3 numbers possible less than 3 with given set of digits – 
1, 4, 9

Input: D[] = {“1”, “3”, “5”, “7”}, N = 100 
Output: 20 
Explanation: 
There are only 20 numbers possible less than 100 with given set of digits – 
1, 3, 5, 7, 11, 13, 15, 17, 31, 33, 35, 37, 51, 53, 55, 57, 71, 73, 75, 77. 
 

Naive Approach:Check the digits of all the numbers of range [1, N], If all the digits of a number belong to the given digit set then increment the count by 1.

Efficient Approach: The idea is to use the concept of Digit DP and traverse the given set of digits and generate all the numbers which are strictly less than the given number N. Recursively choose the digit for all the possible position of the number and pass a boolean variable tight to check that by including that digit, the number falls into the given range or not. 

Let’s think of the possible state for the DP –  

  1. pos: It tells about the position of the digit to be chosen, such that the number falls into the given range.
  2. tight: This will help us know about the current digits are restricted or not. If the digits are restricted, then any digit can be chosen from the given set of digits. Otherwise, the digits can be chosen in range [1, N[pos]].
  3. size: It will tells the number of the digits to be chosen.

Below is the illustration of the recursive function: 

  • Base Case: The base case for this problem will be when the position of the digit to be chosen is equal to the length of digits to be chosen, then there is only one possible number containing the digits which are chosen till yet. 
if (position == countDigits(N))
    return 1
  • Recursive Case: For generating the number in the given range, use the tight variable to choose the possible digits in range as follows: 
    • If the value of tight is 0, denotes that by including that digit will give the number less than the given range.
    • Otherwise, If the value of tight is 1, denotes that by including that digit, it will give the number greater than the given range. So we can remove all permutations after getting tight value 1 to avoid more number of recursive calls.
  • Store the count of the numbers possible after choosing each digit for every position.

Below is the implementation of the above approach: 

C++




// C++ implementation to find the
// count of numbers possible less
// than N, such that every digit
// is from the given set of digits
#include <bits/stdc++.h>
 
using namespace std;
 
int dp[15][2];
 
// Function to convert integer
// into the string
string convertToString(int num)
{
    stringstream ss;
    ss << num;
    string s = ss.str();
    return s;
}
 
// Recursive function to find the
// count of numbers possible less
// than N, such that every digit
// is from the given set of digits
int calculate(int pos, int tight,
    int D[], int sz, string& num)
{
    // Base case
    if (pos == num.length())
        return 1;
     
    // Condition when the subproblem
    // is computed previously
    if (dp[pos][tight] != -1)
        return dp[pos][tight];
 
    int val = 0;
     
    // Condition when the number
    // chosen till now is definitely
    // smaller than the given number N
    if (tight == 0) {
         
        // Loop to traverse all the
        // digits of the given set
        for (int i = 0; i < sz; i++) {
             
            if (D[i] < (num[pos] - '0')) {
                val += calculate(pos + 1,
                           1, D, sz, num);
            }
            else if (D[i] == num[pos] - '0')
                val += calculate(pos + 1,
                       tight, D, sz, num);
        }
    }
    else {
        // Loop to traverse all the
        // digits from the given set
        for (int i = 0; i < sz; i++) {
            val += calculate(pos + 1,
                    tight, D, sz, num);
        }
    }
     
    // Store the solution for
    // current subproblem
    return dp[pos][tight] = val;
}
 
// Function to count the numbers
// less than N from given set of digits
int countNumbers(int D[], int N, int sz)
{
    // Converting the number to string
    string num = convertToString(N);
    int len = num.length();
     
    // Initially no subproblem
    // is solved till now
    memset(dp, -1, sizeof(dp));
     
    // Find the solution of all the
    // number equal to the length of
    // the given number N
    int ans = calculate(0, 0, D, sz, num);
     
    // Loop to find the number less in
    // in the length of the given number
    for (int i = 1; i < len; i++)
        ans += calculate(i, 1, D, sz, num);
 
    return ans;
}
 
// Driver Code
int main()
{
    int sz = 3;
 
    int D[sz] = { 1, 4, 9 };
    int N = 10;
     
    // Function Call
    cout << countNumbers(D, N, sz);
    return 0;
}


Java




// Java implementation to find the
// count of numbers possible less
// than N, such that every digit
// is from the given set of digits
import java.util.*;
 
class GFG{
  
static int [][]dp = new int[15][2];
  
// Function to convert integer
// into the String
static String convertToString(int num)
{
    return String.valueOf(num);
}
  
// Recursive function to find the
// count of numbers possible less
// than N, such that every digit
// is from the given set of digits
static int calculate(int pos, int tight,
    int D[], int sz, String num)
{
    // Base case
    if (pos == num.length())
        return 1;
      
    // Condition when the subproblem
    // is computed previously
    if (dp[pos][tight] != -1)
        return dp[pos][tight];
  
    int val = 0;
      
    // Condition when the number
    // chosen till now is definitely
    // smaller than the given number N
    if (tight == 0) {
          
        // Loop to traverse all the
        // digits of the given set
        for (int i = 0; i < sz; i++) {
              
            if (D[i] < (num.charAt(pos) - '0')) {
                val += calculate(pos + 1,
                           1, D, sz, num);
            }
            else if (D[i] == num.charAt(pos) - '0')
                val += calculate(pos + 1,
                       tight, D, sz, num);
        }
    }
    else {
        // Loop to traverse all the
        // digits from the given set
        for (int i = 0; i < sz; i++) {
            val += calculate(pos + 1,
                    tight, D, sz, num);
        }
    }
      
    // Store the solution for
    // current subproblem
    return dp[pos][tight] = val;
}
  
// Function to count the numbers
// less than N from given set of digits
static int countNumbers(int D[], int N, int sz)
{
    // Converting the number to String
    String num = convertToString(N);
    int len = num.length();
      
    // Initially no subproblem
    // is solved till now
    for (int i = 0; i < 15; i++)
        for (int j = 0; j < 2; j++)
            dp[i][j] = -1;
      
    // Find the solution of all the
    // number equal to the length of
    // the given number N
    int ans = calculate(0, 0, D, sz, num);
      
    // Loop to find the number less in
    // in the length of the given number
    for (int i = 1; i < len; i++)
        ans += calculate(i, 1, D, sz, num);
  
    return ans;
}
  
// Driver Code
public static void main(String[] args)
{
    int sz = 3;
  
    int D[] = { 1, 4, 9 };
    int N = 10;
      
    // Function Call
    System.out.print(countNumbers(D, N, sz));
}
}
 
// This code is contributed by Rajput-Ji


Python3




# Python3 implementation to find the
# count of numbers possible less
# than N, such that every digit
# is from the given set of digits
import numpy as np;
dp = np.ones((15,2))*-1;
 
# Function to convert integer
# into the string
def convertToString(num) :
    return str(num);
 
# Recursive function to find the
# count of numbers possible less
# than N, such that every digit
# is from the given set of digits
def calculate(pos,tight,  D, sz, num) :
 
    # Base case
    if (pos == len(num)):
        return 1;
     
    # Condition when the subproblem
    # is computed previously
    if (dp[pos][tight] != -1) :
        return dp[pos][tight];
 
    val = 0;
     
    # Condition when the number
    # chosen till now is definitely
    # smaller than the given number N
    if (tight == 0) :
         
        # Loop to traverse all the
        # digits of the given set
        for i in range(sz) :
             
            if (D[i] < (ord(num[pos]) - ord('0'))) :
                val += calculate(pos + 1, 1, D, sz, num);
             
            elif (D[i] == ord(num[pos]) - ord('0')) :
                val += calculate(pos + 1, tight, D, sz, num);
     
    else :
        # Loop to traverse all the
        # digits from the given set
        for i in range(sz) :
            val += calculate(pos + 1, tight, D, sz, num);
             
    # Store the solution for
    # current subproblem
    dp[pos][tight] = val;
     
    return dp[pos][tight];
 
# Function to count the numbers
# less than N from given set of digits
def countNumbers(D, N, sz) :
 
    # Converting the number to string
    num = convertToString(N);
    length = len(num);
     
    # Initially no subproblem
    # is solved till now
    # dp = np.ones((15,2))*-1;
     
    # Find the solution of all the
    # number equal to the length of
    # the given number N
    ans = calculate(0, 0, D, sz, num);
     
    # Loop to find the number less in
    # in the length of the given number
    for i in range(1,length) :
        ans += calculate(i, 1, D, sz, num);
 
    return ans;
 
 
# Driver Code
if __name__ == "__main__" :
 
    sz = 3;
 
    D = [ 1, 4, 9 ];
    N = 10;
     
    # Function Call
    print(countNumbers(D, N, sz));
 
    # This code is contributed by AnkitRai01


C#




// C# implementation to find the
// count of numbers possible less
// than N, such that every digit
// is from the given set of digits
using System;
 
class GFG{
   
static int [,]dp = new int[15, 2];
   
// Function to convert integer
// into the String
static String convertToString(int num)
{
    return String.Join("",num);
}
   
// Recursive function to find the
// count of numbers possible less
// than N, such that every digit
// is from the given set of digits
static int calculate(int pos, int tight,
    int []D, int sz, String num)
{
    // Base case
    if (pos == num.Length)
        return 1;
       
    // Condition when the subproblem
    // is computed previously
    if (dp[pos,tight] != -1)
        return dp[pos,tight];
   
    int val = 0;
       
    // Condition when the number
    // chosen till now is definitely
    // smaller than the given number N
    if (tight == 0) {
           
        // Loop to traverse all the
        // digits of the given set
        for (int i = 0; i < sz; i++) {
               
            if (D[i] < (num[pos] - '0')) {
                val += calculate(pos + 1,
                           1, D, sz, num);
            }
            else if (D[i] == num[pos] - '0')
                val += calculate(pos + 1,
                       tight, D, sz, num);
        }
    }
    else {
        // Loop to traverse all the
        // digits from the given set
        for (int i = 0; i < sz; i++) {
            val += calculate(pos + 1,
                    tight, D, sz, num);
        }
    }
       
    // Store the solution for
    // current subproblem
    return dp[pos,tight] = val;
}
   
// Function to count the numbers
// less than N from given set of digits
static int countNumbers(int []D, int N, int sz)
{
    // Converting the number to String
    String num = convertToString(N);
    int len = num.Length;
       
    // Initially no subproblem
    // is solved till now
    for (int i = 0; i < 15; i++)
        for (int j = 0; j < 2; j++)
            dp[i,j] = -1;
       
    // Find the solution of all the
    // number equal to the length of
    // the given number N
    int ans = calculate(0, 0, D, sz, num);
       
    // Loop to find the number less in
    // in the length of the given number
    for (int i = 1; i < len; i++)
        ans += calculate(i, 1, D, sz, num);
   
    return ans;
}
   
// Driver Code
public static void Main(String[] args)
{
    int sz = 3;
   
    int []D = { 1, 4, 9 };
    int N = 10;
       
    // Function Call
    Console.Write(countNumbers(D, N, sz));
}
}
 
// This code is contributed by Princi Singh


Javascript




<script>
 
// JavaScript implementation to find the
// count of numbers possible less
// than N, such that every digit
// is from the given set of digits
 
var dp = Array.from(Array(15), ()=>Array(2).fill(-1));
 
 
// Recursive function to find the
// count of numbers possible less
// than N, such that every digit
// is from the given set of digits
function calculate(pos, tight, D, sz, num)
{
    // Base case
    if (pos == num.length)
        return 1;
     
    // Condition when the subproblem
    // is computed previously
    if (dp[pos][tight] != -1)
        return dp[pos][tight];
 
    var val = 0;
     
    // Condition when the number
    // chosen till now is definitely
    // smaller than the given number N
    if (tight == 0) {
         
        // Loop to traverse all the
        // digits of the given set
        for (var i = 0; i < sz; i++) {
             
            if (D[i] < (num[pos] - '0')) {
                val += calculate(pos + 1,
                           1, D, sz, num);
            }
            else if (D[i] == num[pos] - '0')
                val += calculate(pos + 1,
                       tight, D, sz, num);
        }
    }
    else {
        // Loop to traverse all the
        // digits from the given set
        for (var i = 0; i < sz; i++) {
            val += calculate(pos + 1,
                    tight, D, sz, num);
        }
    }
     
    // Store the solution for
    // current subproblem
    return dp[pos][tight] = val;
}
 
// Function to count the numbers
// less than N from given set of digits
function countNumbers(D, N, sz)
{
    // Converting the number to string
    var num = (N.toString());
    var len = num.length;
     
     
    // Find the solution of all the
    // number equal to the length of
    // the given number N
    var ans = calculate(0, 0, D, sz, num);
     
    // Loop to find the number less in
    // in the length of the given number
    for (var i = 1; i < len; i++)
        ans += calculate(i, 1, D, sz, num);
 
    return ans;
}
 
// Driver Code
var sz = 3;
var D = [1, 4, 9];
var N = 10;
 
// Function Call
document.write( countNumbers(D, N, sz));
 
 
</script>


Output: 

3

 

Time complexity: O(Len(D)) 
Space complexity: O(12*2)
 

Feeling lost in the world of random DSA topics, wasting time without progress? It’s time for a change! Join our DSA course, where we’ll guide you on an exciting journey to master DSA efficiently and on schedule.
Ready to dive in? Explore our Free Demo Content and join our DSA course, trusted by over 100,000 neveropen!

RELATED ARTICLES

Most Popular

Recent Comments