Sunday, November 17, 2024
Google search engine
HomeData Modelling & AIMinimum number of coins that can generate all the values in the...

Minimum number of coins that can generate all the values in the given range

Given an integer N, the task is to find the minimum number of coins required to create all the values in the range [1, N].

Examples: 

Input: N = 5
Output: 3
The coins {1, 2, 4} can be used to generate all the values in the range [1, 5].
1 = 1
2 = 2
3 = 1 + 2
4 = 4
5 = 1 + 4

Input: N = 10
Output: 4

Approach: The problem is a variation of coin change problem, it can be solved with the help of binary numbers. In the above example, it can be seen that to create all the values between 1 to 10, denominator {1, 2, 4, 8} are required which can be rewritten as {20, 21, 22, 23}. The minimum number of coins to create all the values for a value N can be computed using the below algorithm. 

// A list which contains the sum of all previous 
// bit values including that bit value
list = [ 1, 3, 7, 15, 31, 63, 127, 255, 511, 1023]
    // range = N
    for value in  list:
        if(value >= N):
            print(list.index(value) + 1)
            break

Below is the implementation of the above approach:

C++




// C++ implementation of the approach
#include <bits/stdc++.h>
using namespace std;
 
// Function to return the count
// of minimum coins required
int findCount(int N)
{
 
    // To store the required sequence
    vector<int> list;
    int sum = 0;
    int i;
 
    // Creating list of the sum of all
    // previous bit values including
    // that bit value
    for (i = 0; i < 20; i++) {
        sum += (1<<i);
        list.push_back(sum);
    }
 
    for (i = 0; i < 20; i++) {
        if (list[i] >= N) {
            return (i + 1);
        }
    }
}
 
// Driver Code
int main()
{
    int N = 10;
    cout << findCount(N) << endl;
    return 0;
}
 
// This code is contributed by kanugargng


Java




// Java implementation of the approach
import java.util.*;
 
class GFG {
 
    // Function to return the count
    // of minimum coins required
    static int findCount(int N)
    {
        Vector list = new Vector();
        int sum = 0;
        int i;
 
        // Creating list of the sum of all
        // previous bit values including
        // that bit value
        for (i = 0; i < 20; i++) {
            sum += Math.pow(2, i);
            list.add(sum);
        }
 
        for (i = 0; i < 20; i++) {
            if ((int)list.get(i) >= N)
                return (list.indexOf(list.get(i)) + 1);
        }
        return 0;
    }
 
    // Driver Code
    public static void main(String[] args)
    {
        int N = 10;
 
        // Function Call to find count
        System.out.println(findCount(N));
    }
}
 
// This code is contributed by AnkitRai01


Python3




# Python3 implementation of the approach
 
# Function to return the count
# of minimum coins required
 
 
def findCount(N):
 
    # To store the required sequence
    list = []
    sum = 0
 
    # Creating list of the sum of all
    # previous bit values including
    # that bit value
    for i in range(0, 20):
        sum += 2**i
        list.append(sum)
 
    for value in list:
        if(value >= N):
            return (list.index(value) + 1)
 
 
# Driver code
N = 10
print(findCount(N))


C#




// C# implementation of the above approach
using System;
using System.Collections.Generic;
 
class GFG {
 
    // Function to return the count
    // of minimum coins required
    static int findCount(int N)
    {
        List<int> list = new List<int>();
        int sum = 0;
        int i;
 
        // Creating list of the sum of all
        // previous bit values including
        // that bit value
 
        for (i = 0; i < 20; i++) {
            sum += (int)Math.Pow(2, i);
            list.Add(sum);
        }
 
        for (i = 0; i < 20; i++) {
            if ((int)list[i] >= N)
                return (i + 1);
        }
        return 0;
    }
 
    // Driver Code
    public static void Main(String[] args)
    {
        int N = 10;
        Console.WriteLine(findCount(N));
    }
}
 
// This code is contributed by PrinciRaj1992


Javascript




<script>
    // Javascript implementation of the above approach
     
    // Function to return the count
    // of minimum coins required
    function findCount(N)
    {
        let list = [];
        let sum = 0;
        let i;
  
        // Creating list of the sum of all
        // previous bit values including
        // that bit value
  
        for (i = 0; i < 20; i++) {
            sum += parseInt(Math.pow(2, i), 10);
            list.push(sum);
        }
  
        for (i = 0; i < 20; i++) {
            if (list[i] >= N)
                return (i + 1);
        }
        return 0;
    }
     
    let N = 10;
      document.write(findCount(N));
     
    // This code is contributed by rameshtravel07.
</script>


Output

4

Time Complexity: O(n)
Auxiliary Space: O(1)

Efficient approach: The minimum number of coins required to create all the values in the range [1, N] will be log(N)/log(2) + 1.

Below is the implementation of the above approach:

C++14




// C++ program to find minimum number of coins
#include<bits/stdc++.h>
using namespace std;
 
// Function to find minimum number of coins
int findCount(int n)
{
    return log(n)/log(2)+1;
}
 
// Driver code
int main()
{
    int N = 10;
    cout << findCount(N) << endl;
    return 0;
}


Java




// Java program to find minimum number of coins
class GFG{
     
// Function to find minimum number of coins
static int findCount(int n)
{
    return (int)(Math.log(n) /
                 Math.log(2)) + 1;
}
 
// Driver code
public static void main(String[] args)
{
    int N = 10;
     
    System.out.println(findCount(N));
}
}
 
// This code is contributed by divyeshrabadiya07


Python3




# Python3 program to find minimum number of coins
import math
 
# Function to find minimum number of coins
def findCount(n):
     
    return int(math.log(n, 2)) + 1
     
# Driver code
N = 10
 
print(findCount(N))
 
# This code is contributed by divyesh072019


C#




// C# program to find minimum number of coins
using System;
 
class GFG{
 
  // Function to find minimum number of coins
  static int findCount(int n)
  {
    return (int)(Math.Log(n) /
                 Math.Log(2)) + 1;
  }
 
  // Driver code
  public static void Main()
  {
    int N = 10;
 
    Console.Write(findCount(N));
  }
}
 
// This code is contributed by rutvik_56.


Javascript




<script>
    // Javascript program to find minimum number of coins
     
    // Function to find minimum number of coins
    function findCount(n)
    {
        return parseInt(Math.log(n)/Math.log(2), 10)+1;
    }
     
    let N = 10;
    document.write(findCount(N));
         
</script>


Output

4

Time complexity : O(log(n))
Auxiliary space: O(1)  

Feeling lost in the world of random DSA topics, wasting time without progress? It’s time for a change! Join our DSA course, where we’ll guide you on an exciting journey to master DSA efficiently and on schedule.
Ready to dive in? Explore our Free Demo Content and join our DSA course, trusted by over 100,000 neveropen!

RELATED ARTICLES

Most Popular

Recent Comments