Wednesday, January 1, 2025
Google search engine
HomeData Modelling & AIK-th lexicographically smallest unique substring of a given string

K-th lexicographically smallest unique substring of a given string

Given a string S. The task is to print the K-th lexicographically the smallest one among the different substrings of s.
A substring of s is a string obtained by taking out a non-empty contiguous part in s. 
For example, if s = ababc, a, bab and ababc are substrings of s, while ac, z, and an empty string are not. Also, we say that substrings are different when they are different as strings.

Examples:

Input: str = “aba”, k = 4 
Output:
All unique substrings are a, ab, aba, b, ba. 
Thus the 4th lexicographically smallest substring is b.

Input: str = “neveropen”, k = 5 
Output: eeksf

Approach: For an arbitrary string t, each of its proper suffixes is lexicographically smaller than t, and the lexicographic rank of t is at least |t|. Thus, the length of the answer is at most K. Generate all substrings of s whose lengths are at most K. Sort them, unique them, and print the K-th one, where N = |S|. 

Below is the implementation of the above approach: 

C++




// C++ implementation of the above approach
#include<bits/stdc++.h>
using namespace std;
 
void kThLexString(string st, int k, int n)
{
     
    // Set to store the unique substring
    set<string> z;
     
    for(int i = 0; i < n; i++)
    {
         
       // String to create each substring
       string pp;
        
       for(int j = i; j < i + k; j++)
       {
          if (j >= n)
              break;
          pp += st[j];
           
          // Adding to set
          z.insert(pp);
       }
    }
     
    // Converting set into a list
    vector<string> fin(z.begin(), z.end());
     
    // Sorting the strings int the list
    // into lexicographical order
    sort(fin.begin(), fin.end());
 
    // Printing kth substring
    cout << fin[k - 1];
}
 
// Driver code
int main()
{
    string s = "neveropen";
    int k = 5;
    int n = s.length();
     
    kThLexString(s, k, n);
}
 
// This code is contributed by yatinagg


Java




// Java implementation of
// the above approach
import java.util.*;
class GFG{
     
public static void kThLexString(String st,
                                int k, int n)
{
    // Set to store the unique substring
    Set<String> z = new HashSet<String>();
     
    for(int i = 0; i < n; i++)
    {
        // String to create each substring
        String pp = "";
     
        for(int j = i; j < i + k; j++)
        {
        if (j >= n)
            break;
        pp += st.charAt(j);
     
        // Adding to set
        z.add(pp);
        }
    }
     
    // Converting set into a list
    Vector<String> fin = new Vector<String>();
    fin.addAll(z);
     
    // Sorting the strings int the list
    // into lexicographical order
    Collections.sort(fin);
     
    // Printing kth substring
    System.out.print(fin.get(k - 1));
}
 
// Driver Code
public static void main(String[] args)
{
    String s = "neveropen";
    int k = 5;
    int n = s.length();
    kThLexString(s, k, n);
}
}
 
// This code is contributed by divyeshrabadiya07


Python3




# Python3 implementation of the above approach
def kThLexString(st, k, n):
    # Set to store the unique substring
    z = set()
 
    for i in range(n):
        # String to create each substring
        pp = ""
 
        for j in range(i, i + k):
 
            if (j >= n):
 
                break
 
            pp += s[j]
            # adding to set
            z.add(pp)
 
    # converting set into a list
    fin = list(z)
     
    # sorting the strings int the list
    # into lexicographical order
    fin.sort()
 
    # printing kth substring
    print(fin[k - 1])
 
 
s = "neveropen"
 
k = 5
 
n = len(s)
kThLexString(s, k, n)


C#




// C# implementation of
// the above approach
using System;
using System.Collections.Generic;
using System.Collections;
 
class GFG{
      
public static void kThLexString(string st,
                                int k, int n)
{
     
    // Set to store the unique substring
    HashSet<string> z = new HashSet<string>();
      
    for(int i = 0; i < n; i++)
    {
         
        // String to create each substring
        string pp = "";
      
        for(int j = i; j < i + k; j++)
        {
            if (j >= n)
                break;
                 
            pp += st[j];
          
            // Adding to set
            z.Add(pp);
        }
    }
     
    // Converting set into a list
    ArrayList fin = new ArrayList();
     
    foreach(string s in z)
    {
        fin.Add(s);
    }
     
    // Sorting the strings int the list
    // into lexicographical order
    fin.Sort();
      
    // Printing kth substring
    Console.Write(fin[k - 1]);
}
  
// Driver Code
public static void Main(string[] args)
{
    string s = "neveropen";
    int k = 5;
    int n = s.Length;
     
    kThLexString(s, k, n);
}
}
 
// This code is contributed by rutvik_56


Javascript




<script>
 
// JavaScript implementation of the above approach
 
function kThLexString(st, k, n)
{
     
    // Set to store the unique substring
    var z = new Set();
     
    for(var i = 0; i < n; i++)
    {
         
       // String to create each substring
       var pp = "";
        
       for(var j = i; j < i + k; j++)
       {
          if (j >= n)
              break;
          pp += st[j];
           
          // Adding to set
          z.add(pp);
       }
    }
 
    var fin = [];
 
    z.forEach(element => {
        fin.push(element);
    });
     
    fin.sort();
     
    // Printing kth substring
    document.write( fin[k-1]);
}
 
// Driver code
 
var s = "neveropen";
var k = 5;
var n = s.length;
kThLexString(s, k, n);
 
</script>


Output

eeksf

Time Complexity: O(nk log(nk) where n is the length of the string, and k is the length of the substring.

Space Complexity: O(nk)

Feeling lost in the world of random DSA topics, wasting time without progress? It’s time for a change! Join our DSA course, where we’ll guide you on an exciting journey to master DSA efficiently and on schedule.
Ready to dive in? Explore our Free Demo Content and join our DSA course, trusted by over 100,000 neveropen!

RELATED ARTICLES

Most Popular

Recent Comments