Saturday, January 11, 2025
Google search engine
HomeData Modelling & AICount number of ways to arrange first N numbers

Count number of ways to arrange first N numbers

Count number of ways to arrange the first N natural numbers in a line such that the left-most number is always 1 and no two consecutive numbers have an absolute difference greater than 2.

Examples: 

Input: N = 4 
Output:
The only possible arrangements are (1, 2, 3, 4), 
(1, 2, 4, 3), (1, 3, 4, 2) and (1, 3, 2, 4).

Input: N = 6 
Output:

Naive approach: Generate all the permutations and count how many of them satisfy the given conditions.

Below is the implementation of the above approach:

C++




// C++ implementation of the approach
#include <bits/stdc++.h>
using namespace std;
 
// Function to return the count
// of required arrangements
int countWays(int n)
{
 
    // Create a vector
    vector<int> a;
    int i = 1;
 
    // Store numbers from 1 to n
    while (i <= n)
        a.push_back(i++);
 
    // To store the count of ways
    int ways = 0;
 
    // Generate all the permutations
    // using next_permutation in STL
    do {
        // Initialize flag to true if first
        // element is 1 else false
        bool flag = (a[0] == 1);
 
        // Checking if the current permutation
        // satisfies the given conditions
        for (int i = 1; i < n; i++) {
 
            // If the current permutation is invalid
            // then set the flag to false
            if (abs(a[i] - a[i - 1]) > 2)
                flag = 0;
        }
 
        // If valid arrangement
        if (flag)
            ways++;
 
        // Generate the next permutation
    } while (next_permutation(a.begin(), a.end()));
 
    return ways;
}
 
// Driver code
int main()
{
    int n = 6;
 
    cout << countWays(n);
 
    return 0;
}


Java




// Java implementation of the
// above approach
import java.util.*;
class GFG{
 
// Function to return the count
// of required arrangements
static int countWays(int n)
{
  // Create a vector
  Vector<Integer> a =
         new Vector<>();
  int i = 1;
 
  // Store numbers from
  // 1 to n
  while (i <= n)
    a.add(i++);
 
  // To store the count
  // of ways
  int ways = 0;
 
  // Generate all the permutations
  // using next_permutation in STL
  do
  {
    // Initialize flag to true
    // if first element is 1
    // else false
    boolean flag = (a.get(0) == 1);
 
    // Checking if the current
    // permutation satisfies the
    // given conditions
    for (int j = 1; j < n; j++)
    {
      // If the current permutation
      // is invalid then set the
      // flag to false
      if (Math.abs(a.get(j) -
                   a.get(j - 1)) > 2)
        flag = false;
    }
 
    // If valid arrangement
    if (flag)
      ways++;
 
    // Generate the next permutation
  } while (next_permutation(a));
 
  return ways;
}
   
static boolean next_permutation(Vector<Integer> p)
{
  for (int a = p.size() - 2;
           a >= 0; --a)
    if (p.get(a) < p.get(a + 1))
      for (int b = p.size() - 1;; --b)
        if (p.get(b) > p.get(a))
        {
          int t = p.get(a);
          p.set(a, p.get(b));
          p.set(b, t);
 
          for (++a, b = p.size() - 1;
                 a < b; ++a, --b)
          {
            t = p.get(a);
            p.set(a, p.get(b));
            p.set(b, t);
          }
          return true;
        }
  return false;
}
 
// Driver code
public static void main(String[] args)
{
  int n = 6;
  System.out.print(countWays(n));
}
}
 
// This code is contributed by shikhasingrajput


Python3




# Python3 implementation of the approach
from itertools import permutations
 
# Function to return the count
# of required arrangements
def countWays(n):
     
    # Create a vector
    a = []
    i = 1
     
    # Store numbers from 1 to n
    while (i <= n):
        a.append(i)
        i += 1
         
    # To store the count of ways
    ways = 0
     
    # Generate the all permutation
    for per in list(permutations(a)):
         
        # Initialize flag to true if first
        # element is 1 else false
        flag = 1 if (per[0] == 1) else 0
         
        # Checking if the current permutation
        # satisfies the given conditions
        for i in range(1, n):
             
            # If the current permutation is invalid
            # then set the flag to false
            if (abs(per[i] - per[i - 1]) > 2):
                flag = 0
                 
        # If valid arrangement
        if (flag):
            ways += 1
 
    return ways
     
# Driver code
n = 6
 
print(countWays(n))
 
# This code is contributed by shivanisinghss2110


C#




// C# implementation of the
// above approach
using System;
using System.Collections.Generic;
class GFG{
 
// Function to return the count
// of required arrangements
static int countWays(int n)
{
  // Create a vector
  List<int> a =
       new List<int>();
  int i = 1;
 
  // Store numbers from
  // 1 to n
  while (i <= n)
    a.Add(i++);
 
  // To store the count
  // of ways
  int ways = 0;
 
  // Generate all the
  // permutations using
  // next_permutation in STL
  do
  {
    // Initialize flag to true
    // if first element is 1
    // else false
    bool flag = (a[0] == 1);
 
    // Checking if the current
    // permutation satisfies the
    // given conditions
    for (int j = 1; j < n; j++)
    {
      // If the current permutation
      // is invalid then set the
      // flag to false
      if (Math.Abs(a[j] -
                   a[j - 1]) > 2)
        flag = false;
    }
 
    // If valid arrangement
    if (flag)
      ways++;
 
    // Generate the next
    // permutation
  } while (next_permutation(a));
 
  return ways;
}
   
static bool next_permutation(List<int> p)
{
  for (int a = p.Count - 2;
           a >= 0; --a)
    if (p[a] < p[a + 1])
      for (int b = p.Count - 1;; --b)
        if (p[b] > p[a])
        {
          int t = p[a];
          p[a] = p[b];
          p[b]  =  t;
 
          for (++a, b = p.Count - 1;
                 a < b; ++a, --b)
          {
            t = p[a];
            p[a] = p[b];
            p[b] = t;
          }
          return true;
        }
  return false;
}
 
// Driver code
public static void Main(String[] args)
{
  int n = 6;
  Console.Write(countWays(n));
}
}
 
// This code is contributed by Rajput-Ji


Javascript




<script>
// Javascript implementation of the
// above approach
 
// Function to return the count
// of required arrangements
function countWays(n)
{
    // Create a vector
  let a =[];
  let i = 1;
  
  // Store numbers from
  // 1 to n
  while (i <= n)
    a.push(i++);
  
  // To store the count
  // of ways
  let ways = 0;
  
  // Generate all the permutations
  // using next_permutation in STL
  do
  {
    // Initialize flag to true
    // if first element is 1
    // else false
    let flag = (a[0] == 1);
  
    // Checking if the current
    // permutation satisfies the
    // given conditions
    for (let j = 1; j < n; j++)
    {
      // If the current permutation
      // is invalid then set the
      // flag to false
      if (Math.abs(a[j] -
                   a[j - 1]) > 2)
        flag = false;
    }
  
    // If valid arrangement
    if (flag)
      ways++;
  
    // Generate the next permutation
  } while (next_permutation(a));
  
  return ways;
}
 
function next_permutation(p)
{
    for (let a = p.length - 2;a >= 0; --a)
    {if (p[a] < p[a + 1])
      {for (let b = p.length - 1;; --b)
        {if (p[b] > p[a])
        {
          let t = p[a];
          p[a] = p[b];
          p[b] = t;
  
          for (++a, b = p.length - 1;
                 a < b; ++a, --b)
          {
            t = p[a];
            p[a] = p[b];
            p[b] = t;
          }
          return true;
        }
        }
        }
   }
  return false;
}
 
// Driver code
let n = 6;
document.write(countWays(n));
 
 
// This code is contributed by patel2127
</script>


Output: 

9

 

Efficient approach: This problem can be solved using dynamic programming
A better linear approach to this problem relies on the following observation. Look for the position of 2. Let a[i] be the number of ways for n = i. There are three cases: 

  1. 12_____ – “2” in the second position.
  2. 1*2____ – “2” in the third position. 
    1**2___ – “2” in the fourth position is impossible because only possible way is (1342), which is same as case 3. 
    1***2__ – “2” in the fifth position is impossible because 1 must be followed by 3, 3 by 5 and 2 needs 4 before it so it becomes 13542, again as case 3.
  3. 1_(i – 2)terms___2 – “2” in the last position (1357642 and similar)

For each case, the following are the sub-task: 
Adding 1 to each term of a[i – 1] i.e. (1__(i – 1) terms__). 
As for 1_2_____ there can only be one 1324___(i – 4) terms____ i.e. a[i – 3].

Hence, the recurrence relation will be,  

a[i] = a[i – 1] + a[i – 3] + 1 

And the base cases will be: 

a[0] = 0 
a[1] = 1 
a[2] = 1 

Below is the implementation of the above approach: 

C++




// C++ implementation of the approach
#include <bits/stdc++.h>
using namespace std;
 
// Function to return the count
// of required arrangements
int countWays(int n)
{
    // Create the dp array
    int dp[n + 1];
 
    // Initialize the base cases
    // as explained above
    dp[0] = 0;
    dp[1] = 1;
 
    // (12) as the only possibility
    dp[2] = 1;
 
    // Generate answer for greater values
    for (int i = 3; i <= n; i++) {
        dp[i] = dp[i - 1] + dp[i - 3] + 1;
    }
 
    // dp[n] contains the desired answer
    return dp[n];
}
 
// Driver code
int main()
{
    int n = 6;
 
    cout << countWays(n);
 
    return 0;
}


Java




// Java implementation of the approach
class GFG
{
 
// Function to return the count
// of required arrangements
static int countWays(int n)
{
    // Create the dp array
    int []dp = new int[n + 1];
 
    // Initialize the base cases
    // as explained above
    dp[0] = 0;
    dp[1] = 1;
 
    // (12) as the only possibility
    dp[2] = 1;
 
    // Generate answer for greater values
    for (int i = 3; i <= n; i++)
    {
        dp[i] = dp[i - 1] + dp[i - 3] + 1;
    }
 
    // dp[n] contains the desired answer
    return dp[n];
}
 
// Driver code
public static void main(String args[])
{
    int n = 6;
    System.out.println(countWays(n));
}
}
 
// This code is contributed by 29AjayKumar


Python3




# Python implementation of the approach
 
# Function to return the count
# of required arrangements
def countWays(n):
     
    # Create the dp array
    dp = [0 for i in range(n + 1)]
 
    # Initialize the base cases
    # as explained above
    dp[0] = 0
    dp[1] = 1
 
    # (12) as the only possibility
    dp[2] = 1
 
    # Generate answer for greater values
    for i in range(3, n + 1):
        dp[i] = dp[i - 1] + dp[i - 3] + 1
 
    # dp[n] contains the desired answer
    return dp[n]
 
# Driver code
n = 6
 
print(countWays(n))
 
# This code is contributed by Mohit Kumar


C#




// C# implementation of the approach
using System;
class GFG
{
 
// Function to return the count
// of required arrangements
static int countWays(int n)
{
    // Create the dp array
    int []dp = new int[n + 1];
 
    // Initialize the base cases
    // as explained above
    dp[0] = 0;
    dp[1] = 1;
 
    // (12) as the only possibility
    dp[2] = 1;
 
    // Generate answer for greater values
    for (int i = 3; i <= n; i++)
    {
        dp[i] = dp[i - 1] + dp[i - 3] + 1;
    }
 
    // dp[n] contains the desired answer
    return dp[n];
}
 
// Driver code
public static void Main()
{
    int n = 6;
    Console.WriteLine(countWays(n));
}
}
 
// This code is contributed by Code@Mech.


Javascript




<script>
// Function to return the count
// of required arrangements
function countWays( n)
{
 
    // Create the dp array
    let dp = new Array (n + 1);
 
    // Initialize the base cases
    // as explained above
    dp[0] = 0;
    dp[1] = 1;
 
    // (12) as the only possibility
    dp[2] = 1;
 
    // Generate answer for greater values
    for (let i = 3; i <= n; i++) {
        dp[i] = dp[i - 1] + dp[i - 3] + 1;
    }
 
    // dp[n] contains the desired answer
    return dp[n];
}
 
// Driver code
    let n = 6;
 
    document.write(countWays(n));
     
    // This code is contributed by shivanisinghss2110
</script>


Output: 

9

 

Time Complexity: O(N) 
Space Complexity: O(N)

Efficient approach : Space optimization O(1)

In previous approach the current value dp[i] is depend upon the previous 2 values i.e. dp[i-1] and dp[i-3] so instead of using array of size N we can create 3 variables prev1 , prev2, prev3 to keep track of previous 3 computations.  

Implementations Steps :

  • Create variables prev1, prev2, prev3 to store previous computations.
  • Initialize them with base cases.
  • Create a variable curr to store current value.
  • Now iterate over subproblems and get the current value from previous values.
  • After every iteration update prev1, prev2 and prev3 for further iterations.
  • At last return final answer.

Implementation:

C++




// C++ implementation of the approach
#include <bits/stdc++.h>
using namespace std;
 
// Function to return the count
// of required arrangements
int countWays(int n)
{
 
 
    // Initialize the base cases
    // as explained above
    int prev1 =0;
    int prev2 =1;
    int prev3 =1;
     
    // to store current value
    int curr;
     
    // Generate answer for greater values
    for (int i = 3; i <= n; i++) {
        curr = prev3 + prev1 + 1;
         
        // assigning values for further iterations
        prev1 = prev2;
        prev2=prev3;
        prev3=curr;
    }
 
    // curr contains the desired answer
    return curr;
}
 
// Driver code
int main()
{
    int n = 6;
     
      // function call
    cout << countWays(n);
 
    return 0;
}


Python3




# Python implementation of the
# aforementioned approach
def countWays(n):
 
    # Initializing 3 variables
    # prev1 = 0
    # prev2 = 1
    # prev3 = 1
    prev1, prev2, prev3 = 0, 1, 1
 
    # Running a loop from 3 to n
    for i in range(3, n+1):
       
        # using variable curr to store
        # the recent value
        curr = prev3+prev1+1
 
        # assigning values for further iterations
        prev1 = prev2
        prev2 = prev3
        prev3 = curr
 
    return curr
 
 
# Driver Code
n = 6
print(countWays(n))


Javascript




// Function to return the count
// of required arrangements
function countWays(n) {
    // Initialize the base cases
    // as explained above
    let prev1 = 0;
    let prev2 = 1;
    let prev3 = 1;
    // to store current value
    let curr;
    // Generate answer for greater values
    for (let i = 3; i <= n; i++) {
        curr = prev3 + prev1 + 1;
        // assigning values for further iterations
        prev1 = prev2;
        prev2 = prev3;
        prev3 = curr;
    }
    // curr contains the desired answer
    return curr;
}
 
// Driver code
let n = 6;
// function call
console.log(countWays(n));


Java




// Java implementation of the approach
import java.util.*;
 
class Main {
    // Function to return the count
    // of required arrangements
    public static int countWays(int n)
    {
 
        // Initialize the base cases
        // as explained above
        int prev1 = 0;
        int prev2 = 1;
        int prev3 = 1;
 
        // to store current value
        int curr = 0;
 
        // Generate answer for greater values
        for (int i = 3; i <= n; i++) {
            curr = prev3 + prev1 + 1;
 
            // assigning values for further iterations
            prev1 = prev2;
            prev2 = prev3;
            prev3 = curr;
        }
 
        // curr contains the desired answer
        return curr;
    }
 
    // Driver code
    public static void main(String[] args)
    {
        int N = 6;
        System.out.print(countWays(N));
    }
}


C#




using System;
 
public class MainClass {
   
    // Driver Code
    public static void Main()
    {
        int n = 6;
 
        // Initialize the base cases
        // as explained above
        int prev1 = 0;
        int prev2 = 1;
        int prev3 = 1;
 
        int curr = 0;
 
        // Generate answer for greater values
        for (int i = 3; i <= n; i++) {
            curr = prev3 + prev1 + 1;
 
            // Assigning values for
            // further iterations
            prev1 = prev2;
            prev2 = prev3;
            prev3 = curr;
        }
 
        // curr contains desired answer
        Console.WriteLine(curr);
    }
}


Output

9

Time Complexity: O(N) 
Space Complexity: O(1)

Feeling lost in the world of random DSA topics, wasting time without progress? It’s time for a change! Join our DSA course, where we’ll guide you on an exciting journey to master DSA efficiently and on schedule.
Ready to dive in? Explore our Free Demo Content and join our DSA course, trusted by over 100,000 neveropen!

RELATED ARTICLES

Most Popular

Recent Comments