Saturday, January 11, 2025
Google search engine
HomeData Modelling & AIProduct of minimum edge weight between all pairs of a Tree

Product of minimum edge weight between all pairs of a Tree

Given a tree with N vertices and N-1 Edges. Let’s define a function F(a, b) which is equal to the minimum edge weight in the path between node a & b. The task is to calculate the product of all such F(a, b). Here a&b are unordered pairs and a!=b.
So, basically, we need to find the value of: 
 

                         \prod_{i, j}^nF(i, j)  where 0<=i<j<=n-1.

In the input, we will be given the value of N and then N-1 lines follow. Each line contains 3 integers u, v, w denoting edge between node u and v and it’s weight w. Since the product will be very large, output it modulo 10^9+7. 
Examples:
 

Input :
N = 4
1 2 1
1 3 3
4 3 2
Output : 12
Given tree is:
          1
      (1)/  \(3)
       2     3
              \(2)
               4
We will calculate the minimum edge weight between all the pairs:
F(1, 2) = 1         F(2, 3) = 1
F(1, 3) = 3         F(2, 4) = 1
F(1, 4) = 2         F(3, 4) = 2
Product of all F(i, j) = 1*3*2*1*1*2 = 12 mod (10^9 +7) =12

Input :
N = 5
1 2 1
1 3 3
4 3 2
1 5 4
Output :
288

 

If we observe carefully then we will see that if there is a set of nodes in which minimum edge weight is w and if we add a node to this set that connects the node with the whole set by an edge of weight W such that W<w then path formed between recently added node to all nodes present in the set will have minimum weight W. 
So, here we can apply Disjoint-Set Union concept to solve the problem. 
First, sort the data structure according to decreasing weight. Initially assign all nodes as a single set. Now when we merge two sets then do the following:- 
 

      Product=(present weight)^(size of set1*size of set2).                    

We will multiply this product value for all edges of the tree.
Below is the implementation of the above approach: 
 

C++




// C++ Implementation of above approach
#include <bits/stdc++.h>
using namespace std;
#define mod 1000000007
 
// Function to return  (x^y) mod p
int power(int x, unsigned int y, int p)
{
    int res = 1;
 
    x = x % p;
 
    while (y > 0) {
 
        if (y & 1)
            res = (res * x) % p;
        y = y >> 1;
        x = (x * x) % p;
    }
    return res;
}
 
// Declaring size array globally
int size[300005];
int freq[300004];
vector<pair<int, pair<int, int> > > edges;
 
// Initializing DSU data structure
void initialize(int Arr[], int N)
{
    for (int i = 0; i < N; i++) {
        Arr[i] = i;
        size[i] = 1;
    }
}
 
// Function to find the root of ith
// node in the disjoint set
int root(int Arr[], int i)
{
    while (Arr[i] != i) {
        i = Arr[i];
    }
    return i;
}
 
// Weighted union using Path Compression
void weighted_union(int Arr[],
                    int size[], int A, int B)
{
    int root_A = root(Arr, A);
    int root_B = root(Arr, B);
 
    // size of set A is small than size of set B
    if (size[root_A] < size[root_B]) {
        Arr[root_A] = Arr[root_B];
        size[root_B] += size[root_A];
    }
 
    // size of set B is small than size of set A
    else {
        Arr[root_B] = Arr[root_A];
        size[root_A] += size[root_B];
    }
}
 
// Function to add an edge in the tree
void AddEdge(int a, int b, int w)
{
    edges.push_back({ w, { a, b } });
}
 
// Build the tree
void MakeTree()
{
    AddEdge(1, 2, 1);
    AddEdge(1, 3, 3);
    AddEdge(3, 4, 2);
}
 
// Function to return the required product
int MinProduct()
{
    int result = 1;
 
    // Sorting the edges with respect to its weight
    sort(edges.begin(), edges.end());
 
    // Start iterating in decreasing order of weight
    for (int i = edges.size() - 1; i >= 0; i--) {
 
        // Determine Current edge values
        int curr_weight = edges[i].first;
        int Node1 = edges[i].second.first;
        int Node2 = edges[i].second.second;
 
        // Calculate root of each node
        // and size of each set
        int Root1 = root(freq, Node1);
        int Set1_size = size[Root1];
        int Root2 = root(freq, Node2);
        int Set2_size = size[Root2];
 
        // Using the formula
        int prod = Set1_size * Set2_size;
        int Product = power(curr_weight, prod, mod);
 
        // Calculating final result
        result = ((result % mod) *
                             (Product % mod)) % mod;
 
        // Weighted union using Path Compression
        weighted_union(freq, size, Node1, Node2);
    }
    return result % mod;
}
 
// Driver code
int main()
{
    int n = 4;
 
    initialize(freq, n);
 
    MakeTree();
 
    cout << MinProduct();
}


Java




// Java Implementation of above approach
 
import java.util.ArrayList;
import java.util.Collections;
 
public class Product {
 
    // to store first vertex, second vertex and weight of
    // the edge
    static class Edge implements Comparable<Edge> {
        int first, second, weight;
        Edge(int x, int y, int w)
        {
            this.first = x;
            this.second = y;
            this.weight = w;
        }
 
        @Override public int compareTo(Edge edge)
        {
            return this.weight - edge.weight;
        }
    }
 
    static int mod = 1000000007;
 
    // Function to return (x^y) mod p
    static int power(int x, int y, int p)
    {
        int res = 1;
        x = x % p;
        while (y > 0) {
            if ((y & 1) == 1)
                res = (res * x) % p;
            y = y >> 1;
            x = (x * x) % p;
        }
        return res;
    }
 
    // Declaring size array globally
    static int size[] = new int[300005];
    static int freq[] = new int[300004];
    static ArrayList<Edge> edges = new ArrayList<Edge>();
 
    // Initializing DSU data structure
    static void initialize(int Arr[], int N)
    {
        for (int i = 0; i < N; i++) {
            Arr[i] = i;
            size[i] = 1;
        }
    }
 
    // Function to find the root of ith
    // node in the disjoint set
    static int root(int Arr[], int i)
    {
        while (Arr[i] != i) {
            i = Arr[i];
        }
        return i;
    }
 
    // Weighted union using Path Compression
    static void weighted_union(int Arr[], int size[], int A,
                               int B)
    {
        int root_A = root(Arr, A);
        int root_B = root(Arr, B);
 
        // size of set A is small than size of set B
        if (size[root_A] < size[root_B]) {
            Arr[root_A] = Arr[root_B];
            size[root_B] += size[root_A];
        }
 
        // size of set B is small than size of set A
        else {
            Arr[root_B] = Arr[root_A];
            size[root_A] += size[root_B];
        }
    }
 
    // Function to add an edge in the tree
    static void AddEdge(int a, int b, int w)
    {
        edges.add(new Edge(a, b, w));
    }
 
    // Build the tree
    static void MakeTree()
    {
        AddEdge(1, 2, 1);
        AddEdge(1, 3, 3);
        AddEdge(3, 4, 2);
    }
 
    // Function to return the required product
    static int MinProduct()
    {
        int result = 1;
 
        // Sorting the edges with respect to its weight
        // ascending order
        Collections.sort(edges);
 
        // Start iterating in decreasing order of weight
        for (int i = edges.size() - 1; i >= 0; i--) {
 
            // Determine Current edge values
            int curr_weight = edges.get(i).weight;
            int Node1 = edges.get(i).first;
            int Node2 = edges.get(i).second;
 
            // Calculate root of each node
            // and size of each set
            int Root1 = root(freq, Node1);
            int Set1_size = size[Root1];
            int Root2 = root(freq, Node2);
            int Set2_size = size[Root2];
 
            // Using the formula
            int prod = Set1_size * Set2_size;
            int Product = power(curr_weight, prod, mod);
 
            // Calculating final result
            result
                = ((result % mod) * (Product % mod)) % mod;
 
            // Weighted union using Path Compression
            weighted_union(freq, size, Node1, Node2);
        }
        return result % mod;
    }
 
    // Driver code
    public static void main(String[] args)
    {
        int n = 4;
        initialize(freq, n);
        MakeTree();
        System.out.println(MinProduct());
    }
}
 
// This code is contributed by jainlovely450


Python3




# Python3 implementation of the approach
mod = 1000000007
 
# Function to return (x^y) mod p
def power(x: int, y: int, p: int) -> int:
    res = 1
    x %= p
    while y > 0:
        if y & 1:
            res = (res * x) % p
        y = y // 2
        x = (x * x) % p
    return res
 
# Declaring size array globally
size = [0] * 300005
freq = [0] * 300004
edges = []
 
# Initializing DSU data structure
def initialize(arr: list, N: int):
    for i in range(N):
        arr[i] = i
        size[i] = 1
 
# Function to find the root of ith
# node in the disjoint set
def root(arr: list, i: int) -> int:
    while arr[i] != i:
        i = arr[i]
    return i
 
# Weighted union using Path Compression
def weighted_union(arr: list, size: list, A: int, B: int):
    root_A = root(arr, A)
    root_B = root(arr, B)
 
    # size of set A is small than size of set B
    if size[root_A] < size[root_B]:
        arr[root_A] = arr[root_B]
        size[root_B] += size[root_A]
 
    # size of set B is small than size of set A
    else:
        arr[root_B] = arr[root_A]
        size[root_A] += size[root_B]
 
# Function to add an edge in the tree
def AddEdge(a: int, b: int, w: int):
    edges.append((w, (a, b)))
 
# Build the tree
def makeTree():
    AddEdge(1, 2, 1)
    AddEdge(1, 3, 3)
    AddEdge(3, 4, 2)
 
# Function to return the required product
def minProduct() -> int:
    result = 1
 
    # Sorting the edges with respect to its weight
    edges.sort(key = lambda a: a[0])
 
    # Start iterating in decreasing order of weight
    for i in range(len(edges) - 1, -1, -1):
 
        # Determine Current edge values
        curr_weight = edges[i][0]
        node1 = edges[i][1][0]
        node2 = edges[i][1][1]
 
        # Calculate root of each node
        # and size of each set
        root1 = root(freq, node1)
        set1_size = size[root1]
        root2 = root(freq, node2)
        set2_size = size[root2]
 
        # Using the formula
        prod = set1_size * set2_size
        product = power(curr_weight, prod, mod)
 
        # Calculating final result
        result = ((result % mod) * (product % mod)) % mod
 
        # Weighted union using Path Compression
        weighted_union(freq, size, node1, node2)
 
    return result % mod
 
# Driver Code
if __name__ == "__main__":
 
    # Number of nodes and edges
    n = 4
    initialize(freq, n)
    makeTree()
    print(minProduct())
 
# This code is contributed by
# sanjeev2552


Javascript




<script>
 
// JavaScript implementation of the approach
const mod = 1000000007
 
// Function to return (x^y) mod p
function power(x, y, p){
    let res = 1
    x %= p
    while(y > 0){
        if(y & 1)
            res = (res * x) % p
        y = Math.floor(y / 2)
        x = (x * x) % p
    }
    return res
}
 
// Declaring size array globally
let size = new Array(300005).fill(0)
let freq = new Array(300004).fill(0)
let edges = []
 
// Initializing DSU data structure
function initialize(arr, N){
    for(let i=0;i<N;i++){
        arr[i] = i
        size[i] = 1
    }
}
 
// Function to find the root of ith
// node in the disjoint set
function root(arr, i){
    while(arr[i] != i)
        i = arr[i]
    return i
}
 
// Weighted union using Path Compression
function weighted_union(arr, size, A, B){
    let root_A = root(arr, A)
    let root_B = root(arr, B)
 
    // size of set A is small than size of set B
    if(size[root_A] < size[root_B]){
        arr[root_A] = arr[root_B]
        size[root_B] += size[root_A]
    }
 
    // size of set B is small than size of set A
    else{
        arr[root_B] = arr[root_A]
        size[root_A] += size[root_B]
    }
}
 
// Function to add an edge in the tree
function AddEdge(a, b, w){
    edges.push([w, [a, b]])
}
 
// Build the tree
function makeTree(){
    AddEdge(1, 2, 1)
    AddEdge(1, 3, 3)
    AddEdge(3, 4, 2)
}
 
// Function to return the required product
function minProduct(){
    let result = 1
 
    // Sorting the edges with respect to its weight
    edges.sort((a,b)=>a[0]-b[0])
 
    // Start iterating in decreasing order of weight
    for(let i=edges.length - 1;i>=0;i--){
 
        // Determine Current edge values
        let curr_weight = edges[i][0]
        let node1 = edges[i][1][0]
        let node2 = edges[i][1][1]
 
        // Calculate root of each node
        // and size of each set
        let root1 = root(freq, node1)
        let set1_size = size[root1]
        let root2 = root(freq, node2)
        let set2_size = size[root2]
 
        // Using the formula
        let prod = set1_size * set2_size
        let product = power(curr_weight, prod, mod)
 
        // Calculating final result
        result = ((result % mod) * (product % mod)) % mod
 
        // Weighted union using Path Compression
        weighted_union(freq, size, node1, node2)
    }
 
    return result % mod
}
 
// Driver Code
 
// Number of nodes and edges
let n = 4
initialize(freq, n)
makeTree()
document.write(minProduct(),"</br>")
 
// This code is contributed by shinjanpatra
</script>


C#




// C# code for the above approach
using System;
using System.Collections.Generic;
 
namespace MinimumProductSpanningTree {
 
// to store first vertex, second vertex and weight of
// the edge
class Edge : IComparable<Edge> {
    public int First
    {
        get;
        set;
    }
    public int Second
    {
        get;
        set;
    }
    public int Weight
    {
        get;
        set;
    }
 
    public Edge(int x, int y, int w)
    {
        First = x;
        Second = y;
        Weight = w;
    }
 
    public int CompareTo(Edge edge)
    {
        return Weight - edge.Weight;
    }
}
 
class Program {
    static readonly int Mod = 1000000007;
 
    // Declaring size array globally
    static readonly int[] Size = new int[300005];
    static readonly int[] Freq = new int[300004];
    static readonly List<Edge> Edges = new List<Edge>();
    // Function to Inialize DSU
    static void Initialize(int[] arr, int n)
    {
        for (int i = 0; i < n; i++) {
            arr[i] = i;
            Size[i] = 1;
        }
    }
    // Function to find the root of ith
    // node in the disjoint set
    static int Root(int[] arr, int i)
    {
        while (arr[i] != i) {
            i = arr[i];
        }
 
        return i;
    }
 
    static void WeightedUnion(int[] arr, int[] size, int a,
                              int b)
    {
        int rootA = Root(arr, a);
        int rootB = Root(arr, b);
 
        if (size[rootA] < size[rootB]) {
            arr[rootA] = arr[rootB];
            size[rootB] += size[rootA];
        }
        else {
            arr[rootB] = arr[rootA];
            size[rootA] += size[rootB];
        }
    }
 
    static void AddEdge(int a, int b, int w)
    {
        Edges.Add(new Edge(a, b, w));
    }
    // Build the tree
    static void MakeTree()
    {
        AddEdge(1, 2, 1);
        AddEdge(1, 3, 3);
        AddEdge(3, 4, 2);
    }
    // Function to return the required product
    static int MinProduct()
    {
        int result = 1;
        // Sorting the edges with respect to its weight
        // ascending order
        Edges.Sort();
        // Start iterating in decreasing order of weight
        for (int i = Edges.Count - 1; i >= 0; i--) {
            // Determine Current edge values
            int currWeight = Edges[i].Weight;
            int node1 = Edges[i].First;
            int node2 = Edges[i].Second;
 
            // Calculate root of each node
            // and size of each set
            int root1 = Root(Freq, node1);
            int set1Size = Size[root1];
            int root2 = Root(Freq, node2);
            int set2Size = Size[root2];
            // Using the formula
            int prod = set1Size * set2Size;
            int product = Power(currWeight, prod, Mod);
            // Calculating final result
            result = (result * product) % Mod;
            // Weighted union using Path Compression
            WeightedUnion(Freq, Size, node1, node2);
        }
 
        return result;
    }
    // Function to return (x^y) mod p
    static int Power(int x, int y, int p)
    {
        int res = 1;
        x = x % p;
        while (y > 0) {
            if ((y & 1) == 1) {
                res = (res * x) % p;
            }
 
            y = y >> 1;
            x = (x * x) % p;
        }
 
        return res;
    }
    // Driver code
    static void Main(string[] args)
    {
        Initialize(Freq, 300004);
        MakeTree();
        Console.WriteLine(MinProduct());
    }
}
}
// This code is contributed by Potta Lokesh


Output: 

12

 

Time Complexity : O(N*logN)
 

Feeling lost in the world of random DSA topics, wasting time without progress? It’s time for a change! Join our DSA course, where we’ll guide you on an exciting journey to master DSA efficiently and on schedule.
Ready to dive in? Explore our Free Demo Content and join our DSA course, trusted by over 100,000 neveropen!

RELATED ARTICLES

Most Popular

Recent Comments