Sunday, November 17, 2024
Google search engine
HomeData Modelling & AILargest row-wise and column-wise sorted sub-matrix

Largest row-wise and column-wise sorted sub-matrix

Given an N * M matrix mat[][], the task is to find the area-wise largest rectangular sub-matrix such that each column and each row of the sub-matrix is strictly increasing. 

Examples:  

Input: mat[][] = 
{{1, 2, 3}, 
{4, 5, 6}, 
{1, 2, 3}} 
Output:
Largest sub-matrix will be {{1, 2, 3}, {4, 5, 6}}. 
Number of elements in this sub-matrix = 6.

Input: mat[][] = 
{{1, 2, 3}, 
{4, 5, 3}, 
{1, 2, 3}} 
Output:
The largest sub-matrix will be 
{{1, 2}, {4, 5}} 

Approach: There are many approaches to solve this problem varying from O(N3 * M3) to O(N * M). In this article, an approach with O(N * M) time complexity using a stack will be discussed. 
Before proceeding further, its recommended to solve this. problem.

Let’s try to understand the approach broadly, then the algorithm will be discussed. For every column of the matrix, try to find the largest row-wise and column-wise sorted sub-matrix having the left edge at this column. To perform the same, create a matrix pre[][] where pre[i][j] will store the length of the longest increasing sub-array starting from the index j of the array arr[i].
Now using this matrix, for each column j, find the length of the longest row-wise and column-wise sorted array. To process a column, all the increasing sub-segments of the array pre[][j] will be required. The same can be found using the two-pointer technique. In each of these sub-segments, simply find the largest area under the histogram considering the row-wise increasing sub-segments as bars. 

  • Create a prefix-sum array for each row ‘i’, which stores length of the largest increasing sub-array ending at each column ‘j’ of that row.
  • Once we have this array, for each column ‘j’. 
    • Initialize ‘i’ equals 0.
    • Run a loop on ‘i’ while ‘i’ is less than ‘N’ 
      • Initialize ‘k’ equals i+1.
      • while k less than N and arr[k][j] greater than arr[k-1][j], increment k.
      • Apply histogram problem on the sub-array pre[i][j] to pre[k-1][j], to find the largest area under it. Let us call this value ‘V’. Update final answer as ans = max(ans, val).
      • Update ‘i’ equals k-1.

Below is the implementation of the above approach:  

C++




// C++ implementation of the approach
#include <bits/stdc++.h>
using namespace std;
 
// Function to return the largest
// area under a histogram
int histo(vector<int> q)
{
 
    // Stack
    stack<int> q1;
 
    // Length of the vector
    int n = q.size();
 
    // Function to store the next smaller
    // and previous smaller index
    int pre_smaller[q.size()];
    int next_smaller[q.size()];
 
    // Finding the next smaller
    for (int i = 0; i < n; i++)
        pre_smaller[i] = -1, next_smaller[i] = n;
    for (int i = 0; i < n; i++) {
        while (q1.size() and q[q1.top()] > q[i]) {
            next_smaller[q1.top()] = i;
            q1.pop();
        }
        q1.push(i);
    }
 
    // Finding the previous smaller element
    while (q1.size())
        q1.pop();
    for (int i = n - 1; i >= 0; i--) {
        while (q1.size() and q[q1.top()] > q[i]) {
            pre_smaller[q1.top()] = i;
            q1.pop();
        }
        q1.push(i);
    }
 
    // To store the final answer
    int ans = 0;
 
    // Finding the final answer
    for (int i = 0; i < n; i++)
        ans = max(ans, (next_smaller[i]
                        - pre_smaller[i] - 1)
                           * q[i]);
 
    // Returning the final answer
    return ans;
}
 
// Function to return the largest area
// for the required submatrix
int findLargest(vector<vector<int> > arr)
{
    // n and m store the number of
    // rows and columns respectively
    int n = arr.size();
    int m = arr[0].size();
 
    // To store the prefix_sum
    int pre[n][m];
 
    // To store the final answer
    int ans = 0;
 
    // Loop to create the prefix-sum
    // using two pointers
    for (int i = 0; i < n; i++)
        for (int j = 0; j < m; j++) {
            if (j == 0) {
                pre[i][j] = 1;
                continue;
            }
            if (arr[i][j] > arr[i][j - 1])
                pre[i][j] = pre[i][j - 1] + 1;
            else
                pre[i][j] = 1;
        }
 
    // For each column run the loop
    for (int j = 0; j < m; j++) {
 
        // Find the largest row-wise sorted arrays
        for (int i = 0; i < n; i++) {
            int k = i + 1;
            vector<int> q;
            q.push_back(pre[i][j]);
            while (k < n and arr[k] > arr[k - 1])
                q.push_back(pre[k][j]), k++;
 
            // Applying the largest area
            // under the histogram
            ans = max(ans, histo(q));
            i = k - 1;
        }
    }
 
    // Return the final answer
    return ans;
}
 
// Driver code
int main()
{
    vector<vector<int> > arr = { { 1, 2, 3 },
                                 { 4, 5, 6 },
                                 { 1, 2, 3 } };
 
    cout << findLargest(arr);
 
    return 0;
}


Java




// Java implementation of the approach
import java.io.*;
import java.util.*;
class GFG
{
 
  // Function to return the largest
  // area under a histogram
  static int histo(ArrayList<Integer> q)
  {
 
    // Stack
    Stack<Integer> q1 = new Stack<Integer>();
 
    // Length of the vector
    int n = q.size();
 
    // Function to store the next smaller
    // and previous smaller index
    int[] pre_smaller = new int[q.size()];
    int[] next_smaller = new int[q.size()];
 
    // Finding the next smaller
    for (int i = 0; i < n; i++)
    {
      pre_smaller[i] = -1;
      next_smaller[i] = n;
    }
    for (int i = 0; i < n; i++)
    {
      while (q1.size() > 0 && q.get(q1.peek()) > q.get(i))
      {
        next_smaller[q1.peek()] = i;
        q1.pop();
      }
      q1.push(i);
    }
 
    // Finding the previous smaller element
    while (q1.size() > 0)
    {
      q1.pop();
    }
    for (int i = n - 1; i >= 0; i--)
    {
      while (q1.size() > 0 && q.get(q1.peek()) > q.get(i))
      {
        pre_smaller[q1.peek()] = i;
        q1.pop();
      }
      q1.push(i);
    }
 
    // To store the final answer
    int ans = 0;
 
    // Finding the final answer
    for (int i = 0; i < n; i++)
    {
      ans = Math.max(ans, (next_smaller[i] -
                           pre_smaller[i] - 1) *
                     q.get(i));
 
    }
 
    // Returning the final answer
    return ans;
  }
 
  // Function to return the largest area
  // for the required submatrix
  static int findLargest(ArrayList<ArrayList<Integer>> arr)
  {
 
    // n and m store the number of
    // rows and columns respectively
    int n = arr.size();
    int m = arr.get(0).size();
 
    // To store the prefix_sum
    int[][] pre=new int[n][m];
 
    // To store the final answer
    int ans = 0;
 
    // Loop to create the prefix-sum
    // using two pointers
    for (int i = 0; i < n; i++)
    {
      for (int j = 0; j < m; j++)
      {
        if (j == 0)
        {
          pre[i][j] = 1;
          continue;
        }
        if(arr.get(i).get(j) > arr.get(i).get(j - 1))
        {
          pre[i][j] = pre[i][j - 1] + 1;
        }
        else
        {
          pre[i][j] = 1;
        }
      }
    }
 
    // For each column run the loop
    for (int j = 0; j < m; j++)
    {
 
      // Find the largest row-wise sorted arrays
      for (int i = 0; i < n; i++)
      {
        int k = i + 1;
        ArrayList<Integer> q = new ArrayList<Integer>();
        q.add(pre[i][j]);
        while (k < n && arr.get(k).get(0) > arr.get(k - 1).get(0))
        {
          q.add(pre[k][j]);
          k++;
        }
 
        // Applying the largest area
        // under the histogram
        ans = Math.max(ans, histo(q));
        i = k - 1;
      }
    }
 
    // Return the final answer
    return ans;
  }
 
  // Driver code
  public static void main (String[] args)
  {
    ArrayList<ArrayList<Integer>> arr = new ArrayList<ArrayList<Integer>>();
    arr.add(new ArrayList<Integer>(Arrays.asList(1, 2, 3 )));
    arr.add(new ArrayList<Integer>(Arrays.asList(4, 5, 6 )));
    arr.add(new ArrayList<Integer>(Arrays.asList(1, 2, 3 )));
    System.out.println(findLargest(arr));
  }
}
 
// This code is contributed by avanitrachhadiya2155


Python3




# Python3 implementation of the approach
 
# Function to return the largest
# area under a histogram
def histo(q):
 
    # Stack
    q1 = []
 
    # Length of the vector
    n = len(q)
 
    # Function to store the next smaller
    # and previous smaller index
    pre_smaller = [0 for i in range(len(q))]
    next_smaller = [0 for i in range(len(q))]
 
    # Finding the next smaller
    for i in range(n):
        pre_smaller[i] = -1
        next_smaller[i] = n
    for i in range(n):
        while (len(q1) > 0 and q[q1[-1]] > q[i]):
            next_smaller[q1[-1]] = i
            del q1[-1]
        q1.append(i)
 
 
    # Finding the previous smaller element
    while (len(q1) > 0):
        del q1[-1]
 
    for i in range(n - 1, -1, -1):
        while (len(q1) > 0 and q[q1[-1]] > q[i]):
            pre_smaller[q1[-1]] = i
            del q1[-1]
 
        q1.append(i)
 
    # To store the final answer
    ans = 0
 
    # Finding the final answer
    for i in range(n):
        ans = max(ans, (next_smaller[i]- pre_smaller[i] - 1)* q[i])
 
    # Returning the final answer
    return ans
 
# Function to return the largest area
# for the required submatrix
def findLargest(arr):
     
    # n and m store the number of
    # rows and columns respectively
    n = len(arr)
    m = len(arr[0])
 
    # To store the prefix_sum
    pre = [[0 for i in range(m)] for i in range(n)]
 
    # To store the final answer
    ans = 0
 
    # Loop to create the prefix-sum
    # using two pointers
    for i in range(n):
        for j in range(m):
            if (j == 0):
                pre[i][j] = 1
                continue
 
            if (arr[i][j] > arr[i][j - 1]):
                pre[i][j] = pre[i][j - 1] + 1
            else:
                pre[i][j] = 1
 
 
    # For each column run the loop
    for j in range(m):
 
        # Find the largest row-wise sorted arrays
        for i in range(n):
            k = i + 1
            q = []
            q.append(pre[i][j])
            while (k < n and arr[k] > arr[k - 1]):
                q.append(pre[k][j])
                k += 1
 
            # Applying the largest area
            # under the histogram
            ans = max(ans, histo(q))
            i = k - 1
 
    # Return the final answer
    return ans
 
# Driver code
 
arr = [ [ 1, 2, 3 ],
    [ 4, 5, 6 ],
    [ 1, 2, 3 ] ]
 
print(findLargest(arr))
 
# This code is contributed by mohit kumar 29


C#




// C# implementation of the approach
using System;
using System.Collections.Generic;
 
class GFG{
     
// Function to return the largest
// area under a histogram
static int histo(List<int> q)
{
     
    // Stack
    Stack<int> q1 = new Stack<int>();
     
    // Length of the vector
    int n = q.Count;
     
    // Function to store the next smaller
    // and previous smaller index
    int[] pre_smaller = new int[q.Count];
    int[] next_smaller = new int[q.Count];
     
    // Finding the next smaller
    for(int i = 0; i < n; i++)
    {
        pre_smaller[i] = -1;
        next_smaller[i] = n;
    }
    for(int i = 0; i < n; i++)
    {
        while (q1.Count > 0 && q[q1.Peek()] > q[i])
        {
            next_smaller[q1.Peek()] = i;
            q1.Pop();
        }
        q1.Push(i);
    }
     
    // Finding the previous smaller element
    while (q1.Count > 0)
    {
        q1.Pop();
    }
     
    for(int i = n - 1; i >= 0; i--)
    {
        while (q1.Count > 0 && q[q1.Peek()] > q[i])
        {
            pre_smaller[q1.Peek()] = i;
            q1.Pop();
        }
        q1.Push(i);
    }
     
    // To store the final answer
    int ans = 0;
     
    // Finding the final answer
    for(int i = 0; i < n; i++)
    {
        ans = Math.Max(ans, (next_smaller[i] -
                              pre_smaller[i] - 1) * q[i]);
    }
     
    // Returning the
    // final answer
    return ans;
}
 
// Function to return the largest area
// for the required submatrix
static int findLargest(List<List<int>> arr)
{
     
    // n and m store the number of
    // rows and columns respectively
    int n = arr.Count;
    int m = arr[0].Count;
     
    // To store the prefix_sum
    int[,] pre = new int[n, m];
     
    // To store the final answer
    int ans = 0;
     
    // Loop to create the prefix-sum
    // using two pointers
    for(int i = 0; i < n; i++)
    {
        for(int j = 0; j < m; j++)
        {
            if (j == 0)
            {
                pre[i, j] = 1;
                continue;
            }
             
            if (arr[i][j] > arr[i][j - 1])
            {
                pre[i, j] = pre[i,j - 1] + 1;
            }
            else
            {
                pre[i, j] = 1;
            }
        }
    }
     
    // For each column run the loop
    for(int j = 0; j < m; j++)
    {
         
        // Find the largest row-wise sorted arrays
        for(int i = 0; i < n; i++)
        {
            int k = i + 1;
            List<int> q = new List<int>();
            q.Add(pre[i, j]);
             
            while(k < n && arr[k][0] > arr[k - 1][0])
            {
                q.Add(pre[k, j]);
                k++;
            }
             
            // Applying the largest area
            // under the histogram
            ans = Math.Max(ans, histo(q));
            i = k - 1;
        }
    }
     
    // Return the final answer
    return ans;
}
 
// Driver code
static public void Main()
{
    List<List<int>> arr = new List<List<int>>();
    arr.Add(new List<int>(){1, 2, 3});
    arr.Add(new List<int>(){4, 5, 6 });
    arr.Add(new List<int>(){1, 2, 3});
     
    Console.WriteLine(findLargest(arr));
}
}
 
// This code is contributed by rag2127


Javascript




<script>
// Javascript implementation of the approach
 
// Function to return the largest
  // area under a histogram
function histo(q)
{
    // Stack
    let q1 = [];
  
    // Length of the vector
    let n = q.length;
  
    // Function to store the next smaller
    // and previous smaller index
    let pre_smaller = new Array(q.length);
    let next_smaller = new Array(q.length);
  
    // Finding the next smaller
    for (let i = 0; i < n; i++)
    {
      pre_smaller[i] = -1;
      next_smaller[i] = n;
    }
    for (let i = 0; i < n; i++)
    {
      while (q1.length > 0 && q[q1[q1.length-1]] > q[i])
      {
        next_smaller[q1[q1.length-1]] = i;
        q1.pop();
      }
      q1.push(i);
    }
  
    // Finding the previous smaller element
    while (q1.length > 0)
    {
      q1.pop();
    }
    for (let i = n - 1; i >= 0; i--)
    {
      while (q1.length > 0 && q[q1[q1.length-1]] > q[i])
      {
        pre_smaller[q1[q1.length-1]] = i;
        q1.pop();
      }
      q1.push(i);
    }
  
    // To store the final answer
    let ans = 0;
  
    // Finding the final answer
    for (let i = 0; i < n; i++)
    {
      ans = Math.max(ans, (next_smaller[i] -
                           pre_smaller[i] - 1) *
                     q[i]);
  
    }
  
    // Returning the final answer
    return ans;
}
 
// Function to return the largest area
  // for the required submatrix
function findLargest(arr)
{
    // n and m store the number of
    // rows and columns respectively
    let n = arr.length;
       let m = arr[0].length;
  
    // To store the prefix_sum
    let pre=new Array(n);
    for(let i=0;i<n;i++)
    {
        pre[i]=new Array(m);
        for(let j=0;j<m;j++)
        {
            pre[i][j]=0;
        }
    }
  
    // To store the final answer
    let ans = 0;
  
    // Loop to create the prefix-sum
    // using two pointers
    for (let i = 0; i < n; i++)
    {
      for (let j = 0; j < m; j++)
      {
        if (j == 0)
        {
          pre[i][j] = 1;
          continue;
        }
        if(arr[i][j] > arr[i][j - 1])
        {
          pre[i][j] = pre[i][j - 1] + 1;
        }
        else
        {
          pre[i][j] = 1;
        }
      }
    }
  
    // For each column run the loop
    for (let j = 0; j < m; j++)
    {
  
      // Find the largest row-wise sorted arrays
      for (let i = 0; i < n; i++)
      {
        let k = i + 1;
        let q = [];
        q.push(pre[i][j]);
        while (k < n && arr[k][0] > arr[k - 1][0])
        {
          q.push(pre[k][j]);
          k++;
        }
  
        // Applying the largest area
        // under the histogram
        ans = Math.max(ans, histo(q));
        i = k - 1;
      }
    }
  
    // Return the final answer
    return ans;
}
 
 // Driver code
let arr=[[1, 2, 3],[4, 5, 6 ],[1, 2, 3]];
document.write(findLargest(arr));
 
// This code is contributed by patel2127
</script>


Output: 

6

 

Time Complexity: O(N*N), as we are using nested loops to traverse N*N times.

Auxiliary Space: O(N*N), as we are using extra space for matrix.

Feeling lost in the world of random DSA topics, wasting time without progress? It’s time for a change! Join our DSA course, where we’ll guide you on an exciting journey to master DSA efficiently and on schedule.
Ready to dive in? Explore our Free Demo Content and join our DSA course, trusted by over 100,000 neveropen!

RELATED ARTICLES

Most Popular

Recent Comments