Given a matrix arr[][] of size N * M, the task is to print the boundary elements of the given matrix in a clockwise form.
Examples:
Input: arr[][] = {{1, 2, 3}, {4, 5, 6}, {7, 8, 9} }
Output: 1 2 3 6 9 8 7 4
Explanation:
Boundary elements of the matrix are:
1 2 3
4 5 6
7 8 <strong>9
Therefore, the sequence of boundary elements in clockwise form is {1, 2, 3, 6, 9, 8, 7, 4}.
Input: arr[][] = {{11, 12, 33}, {64, 57, 61}, {74, 88, 39}}
Output: 11 12 33 61 39 88 74 64
Naive Approach: The simplest approach to solve this problem is to traverse the given matrix and check if the current element is the boundary element or not. If found to be true, then print the element.
Time Complexity: O(N2)
Auxiliary Space: O(1)
Efficient Approach: To optimize the above approach, the idea is to traverse only the first and last rows and the first and last columns of the matrix. Follow the steps below to solve the problem:
- Print the first row of the matrix.
- Print the last column of the matrix except the first row.
- Print the last row of the matrix except the last column.
- Print the first column of the matrix except the first and last row.
Below is the implementation of the above approach:
C++
// C++ program of the above approach #include <bits/stdc++.h> using namespace std; // Function to print the boundary elements // of the matrix in clockwise void boundaryTraversal(vector<vector< int > > arr, int N, int M) { // Print the first row for ( int i = 0; i < M; i++) { cout << arr[0][i] << " " ; } // Print the last column // except the first row for ( int i = 1; i < N; i++) { cout << arr[i][M - 1] << " " ; } // Print the last row // except the last column if (N > 1) { // Print the last row for ( int i = M - 2; i >= 0; i--) { cout << arr[N - 1][i] << " " ; } } // Print the first column except // the first and last row if (M > 1) { // Print the first column for ( int i = N - 2; i > 0; i--) { cout << arr[i][0] << " " ; } } } // Driver Code int main() { vector<vector< int > > arr{ { 1, 2, 3 }, { 4, 5, 6 }, { 7, 8, 9 } }; int N = arr.size(); int M = arr[0].size(); // Function Call boundaryTraversal(arr, N, M); return 0; } // This code is contributed by Dharanendra L V |
Java
// Java program of the above approach import java.util.*; class GFG { // Function to print the boundary elements // of the matrix in clockwise public static void boundaryTraversal( int arr[][], int N, int M) { // Print the first row for ( int i = 0 ; i < M; i++) { System.out.print(arr[ 0 ][i] + " " ); } // Print the last column // except the first row for ( int i = 1 ; i < N; i++) { System.out.print(arr[i][M - 1 ] + " " ); } // Print the last row // except the last column if (N > 1 ) { // Print the last row for ( int i = M - 2 ; i >= 0 ; i--) { System.out.print(arr[N - 1 ][i] + " " ); } } // Print the first column except // the first and last row if (M > 1 ) { // Print the first column for ( int i = N - 2 ; i > 0 ; i--) { System.out.print(arr[i][ 0 ] + " " ); } } } // Driver Code public static void main(String[] args) { int arr[][] = { { 1 , 2 , 3 }, { 4 , 5 , 6 }, { 7 , 8 , 9 } }; int N = arr.length; int M = arr[ 0 ].length; // Function Call boundaryTraversal(arr, N, M); } } |
Python3
# Python program of the above approach # Function to print the boundary elements # of the matrix in clockwise def boundaryTraversal(arr, N, M): # Print the first row for i in range (M): print (arr[ 0 ][i], end = " " ); # Print the last column # except the first row for i in range ( 1 , N): print (arr[i][M - 1 ], end = " " ); # Print the last row # except the last column if (N > 1 ): # Print the last row for i in range (M - 2 , - 1 , - 1 ): print (arr[N - 1 ][i], end = " " ); # Print the first column except # the first and last row if (M > 1 ): # Print the first column for i in range (N - 2 , 0 , - 1 ): print (arr[i][ 0 ], end = " " ); # Driver Code if __name__ = = '__main__' : arr = [[ 1 , 2 , 3 ], [ 4 , 5 , 6 ], [ 7 , 8 , 9 ]]; N = len (arr); M = len (arr[ 0 ]); # Function Call boundaryTraversal(arr, N, M); # This code is contributed by 29AjayKumar |
C#
// C# program of the above approach using System; class GFG{ // Function to print the boundary elements // of the matrix in clockwise static void boundaryTraversal( int [,] arr, int N, int M) { // Print the first row for ( int i = 0; i < M; i++) { Console.Write(arr[0, i] + " " ); } // Print the last column // except the first row for ( int i = 1; i < N; i++) { Console.Write(arr[i, M - 1] + " " ); } // Print the last row // except the last column if (N > 1) { // Print the last row for ( int i = M - 2; i >= 0; i--) { Console.Write(arr[N - 1, i] + " " ); } } // Print the first column except // the first and last row if (M > 1) { // Print the first column for ( int i = N - 2; i > 0; i--) { Console.Write(arr[i, 0] + " " ); } } } // Driver code static void Main() { int [,] arr = { { 1, 2, 3 }, { 4, 5, 6 }, { 7, 8, 9 } }; int N = 3; int M = 3; // Function Call boundaryTraversal(arr, N, M); } } // This code is contributed by divyeshrabadiya07 |
Javascript
<script> // Javascript program of the above approach // Function to print the boundary elements // of the matrix in clockwise function boundaryTraversal(arr, N, M) { // Print the first row for (let i = 0; i < M; i++) { document.write(arr[0][i] + " " ); } // Print the last column // except the first row for (let i = 1; i < N; i++) { document.write(arr[i][M - 1] + " " ); } // Print the last row // except the last column if (N > 1) { // Print the last row for (let i = M - 2; i >= 0; i--) { document.write(arr[N - 1][i] + " " ); } } // Print the first column except // the first and last row if (M > 1) { // Print the first column for (let i = N - 2; i > 0; i--) { document.write(arr[i][0] + " " ); } } } // Driver Code let arr = [ [ 1, 2, 3 ], [ 4, 5, 6 ], [ 7, 8, 9 ] ]; let N = arr.length; let M = arr[0].length; // Function Call boundaryTraversal(arr, N, M); </script> |
1 2 3 6 9 8 7 4
Time Complexity: O(N + M)
Auxiliary Space: O(1)
Ready to dive in? Explore our Free Demo Content and join our DSA course, trusted by over 100,000 neveropen!