Friday, January 3, 2025
Google search engine
HomeData Modelling & AINumbers less than N which are product of exactly two distinct prime...

Numbers less than N which are product of exactly two distinct prime numbers

Given a number N     . The task is to find all such numbers less than N and are a product of exactly two distinct prime numbers. 
For Example, 33 is the product of two distinct primes i.e 11 * 3, whereas numbers like 60 which has three distinct prime factors i.e 2 * 2 * 3 * 5.
Note: These numbers cannot be a perfect square.
Examples: 
 

Input : N = 30 
Output : 6, 10, 14, 15, 21, 22, 26
Input : N = 50 
Output : 6, 10, 14, 15, 21, 22, 26, 33, 34, 35, 38, 39, 46 
 

 

Algorithm
 

  1. Traverse till N and check whether each number has exactly two prime factors or not.
  2. Now to avoid the situation like 49 having 7 * 7 product of two prime numbers, check whether the number is a perfect square or not to ensure that it has two distinct prime.
  3. If Step 1 and Step 2 satisfies then add the number in the vector list.
  4. Traverse the vector and print all the elements in it.

Below is the implementation of the above approach: 
 

C++




// C++ program to find numbers that are product
// of exactly two distinct prime numbers
 
#include <bits/stdc++.h>
using namespace std;
 
// Function to check whether a number
// is a PerfectSquare or not
bool isPerfectSquare(long double x)
{
 
    long double sr = sqrt(x);
 
    return ((sr - floor(sr)) == 0);
}
 
// Function to check if a number is a
// product of exactly two distinct primes
bool isProduct(int num)
{
    int cnt = 0;
 
    for (int i = 2; cnt < 2 && i * i <= num; ++i) {
        while (num % i == 0) {
            num /= i;
            ++cnt;
        }
    }
 
    if (num > 1)
        ++cnt;
 
    return cnt == 2;
}
 
// Function to find numbers that are product
// of exactly two distinct prime numbers.
void findNumbers(int N)
{
    // Vector to store such numbers
    vector<int> vec;
 
    for (int i = 1; i <= N; i++) {
        if (isProduct(i) && !isPerfectSquare(i)) {
 
            // insert in the vector
            vec.push_back(i);
        }
    }
 
    // Print all numbers till n from the vector
    for (int i = 0; i < vec.size(); i++) {
        cout << vec[i] << " ";
    }
}
 
// Driver function
int main()
{
    int N = 30;
 
    findNumbers(N);
 
    return 0;
}


Java




// Java program to find numbers that are product
// of exactly two distinct prime numbers
import java.util.*; 
 
class GFG{
// Function to check whether a number
// is a PerfectSquare or not
static boolean isPerfectSquare(double x)
{
 
    double sr = Math.sqrt(x);
 
    return ((sr - Math.floor(sr)) == 0);
}
 
// Function to check if a number is a
// product of exactly two distinct primes
static boolean isProduct(int num)
{
    int cnt = 0;
 
    for (int i = 2; cnt < 2 && i * i <= num; ++i) {
        while (num % i == 0) {
            num /= i;
            ++cnt;
        }
    }
 
    if (num > 1)
        ++cnt;
 
    return cnt == 2;
}
 
// Function to find numbers that are product
// of exactly two distinct prime numbers.
static void findNumbers(int N)
{
    // Vector to store such numbers
    Vector<Integer> vec = new Vector<Integer>();
 
    for (int i = 1; i <= N; i++) {
        if (isProduct(i) && !isPerfectSquare(i)) {
 
            // insert in the vector
            vec.add(i);
        }
    }
 
    // Print all numbers till n from the vector
    Iterator<Integer> itr = vec.iterator(); 
            while(itr.hasNext()){ 
                 System.out.print(itr.next()+" "); 
            
}
 
// Driver function
public static void main(String[] args)
{
    int N = 30;
 
    findNumbers(N);
}
}
// This Code is Contributed by mits


Python 3




# Python 3 program to find numbers that are product
# of exactly two distinct prime numbers
 
import math
# Function to check whether a number
# is a PerfectSquare or not
def isPerfectSquare(x):
  
    sr = math.sqrt(x)
  
    return ((sr - math.floor(sr)) == 0)
 
# Function to check if a number is a
# product of exactly two distinct primes
def isProduct( num):
    cnt = 0
  
    i = 2
    while cnt < 2 and i * i <= num:
        while (num % i == 0) :
            num //= i
            cnt += 1
        i += 1
  
    if (num > 1):
        cnt += 1
  
    return cnt == 2
  
# Function to find numbers that are product
# of exactly two distinct prime numbers.
def findNumbers(N):
    # Vector to store such numbers
    vec = []
  
    for i in range(1,N+1) :
        if (isProduct(i) and not isPerfectSquare(i)) :
  
            # insert in the vector
            vec.append(i)
  
    # Print all numbers till n from the vector
    for i in range(len( vec)):
        print(vec[i] ,end= " ")
  
# Driver function
if __name__=="__main__":
     
    N = 30
    findNumbers(N)


C#




// C# program to find numbers that are product
// of exactly two distinct prime numbers
using System;
using System.Collections.Generic;
 
class GFG
{
    // Function to check whether a number
    // is a PerfectSquare or not
    static bool isPerfectSquare(double x)
    {
 
        double sr = Math.Sqrt(x);
 
        return ((sr - Math.Floor(sr)) == 0);
    }
 
    // Function to check if a number is a
    // product of exactly two distinct primes
    static bool isProduct(int num)
    {
        int cnt = 0;
 
        for (int i = 2; cnt < 2 && i * i <= num; ++i)
        {
            while (num % i == 0)
            {
                num /= i;
                ++cnt;
            }
        }
 
        if (num > 1)
            ++cnt;
 
        return cnt == 2;
    }
 
    // Function to find numbers that are product
    // of exactly two distinct prime numbers.
    static void findNumbers(int N)
    {
        // Vector to store such numbers
        List<int> vec = new List<int>();
 
        for (int i = 1; i <= N; i++)
        {
            if (isProduct(i) && !isPerfectSquare(i))
            {
 
                // insert in the vector
                vec.Add(i);
            }
        }
 
        // Print all numbers till n from the vector
        foreach(var a in vec)
                    Console.Write(a + " ");
    }
 
    // Driver code
    public static void Main(String[] args)
    {
        int N = 30;
 
        findNumbers(N);
    }
}
 
// This code has been contributed by 29AjayKumar


PHP




<?php
// PHP program to find numbers that are product
// of exactly two distinct prime numbers
 
// Function to check whether a number
// is a PerfectSquare or not
function isPerfectSquare($x)
{
    $sr = sqrt($x);
 
    return (($sr - floor($sr)) == 0);
}
 
// Function to check if a number is a
// product of exactly two distinct primes
function isProduct($num)
{
    $cnt = 0;
 
    for ($i = 2; $cnt < 2 &&
         $i * $i <= $num; ++$i)
    {
        while ($num % $i == 0)
        {
            $num /= $i;
            ++$cnt;
        }
    }
 
    if ($num > 1)
        ++$cnt;
 
    return $cnt == 2;
}
 
// Function to find numbers that are product
// of exactly two distinct prime numbers.
function findNumbers($N)
{
    // Vector to store such numbers
    $vec = array();
 
    for ($i = 1; $i <= $N; $i++)
    {
        if (isProduct($i) &&
           !isPerfectSquare($i))
        {
 
            // insert in the vector
            array_push($vec, $i);
        }
    }
 
    // Print all numbers till n from the vector
    for ($i = 0; $i < sizeof($vec); $i++)
    {
        echo $vec[$i] . " ";
    }
}
 
// Driver Code
$N = 30;
 
findNumbers($N);
 
// This code is contributed by ita_c


Javascript




<script>
 
// Javascript program to find numbers that are product
// of exactly two distinct prime numbers
 
// Function to check whether a number
// is a PerfectSquare or not
function isPerfectSquare(x)
{
    sr = Math.sqrt(x);
    return ((sr - Math.floor(sr)) == 0);
}
 
// Function to check if a number is a
// product of exactly two distinct primes
function isProduct(num)
{
    var cnt = 0;
 
    for(var i = 2; cnt < 2 && (i * i) <= num; ++i)
    {
        while (num % i == 0)
        {
            num = parseInt(num / i);
            ++cnt;
        }
    }
 
    if (num > 1)
        ++cnt;
 
    return cnt == 2;
}
 
// Function to find numbers that are product
// of exactly two distinct prime numbers.
function findNumbers( N)
{
    // Vector to store such numbers
    vec = [];
 
    for (var i = 1; i <= N; i++)
    {
        if (isProduct(i) && !isPerfectSquare(i))
        {
 
            // insert in the vector
            vec.push(i);
        }
    }
 
    // Print all numbers till n from the vector
    for (var i = 0; i < vec.length; i++) {
        document.write(vec[i] + " ");
    }
}
 
// Driver function
var N = 30;
findNumbers(N);
 
// This code is contributed by noob2000.
</script>


Output: 

6 10 14 15 21 22 26

 

Time Complexity: O(n     *$\sqrt{n}$     )
 Auxiliary Space: O(n) , since n extra space has been taken.

Feeling lost in the world of random DSA topics, wasting time without progress? It’s time for a change! Join our DSA course, where we’ll guide you on an exciting journey to master DSA efficiently and on schedule.
Ready to dive in? Explore our Free Demo Content and join our DSA course, trusted by over 100,000 neveropen!

RELATED ARTICLES

Most Popular

Recent Comments