Given a Binary Tree, return following value for it.
1) For every level, compute sum of all leaves if there are leaves at this level. Otherwise, ignore it.
2) Return multiplication of all sums.
Examples:
Input: Root of below tree
2
/ \
7 5
\
9
Output: 63
First levels doesn't have leaves. Second level
has one leaf 7 and third level also has one
leaf 9. Therefore result is 7*9 = 63
Input: Root of below tree
2
/ \
7 5
/ \ \
8 6 9
/ \ / \
1 11 4 10
Output: 208
First two levels don't have leaves. Third
level has single leaf 8. Last level has four
leaves 1, 11, 4 and 10. Therefore result is
8 * (1 + 11 + 4 + 10)
We strongly recommend you to minimize your browser and try this yourself first.
Recursive approach: Using a Depth-First Search (DFS) Traversal
In this approach, perform a recursive DFS traversal of the binary tree and keep track of the sum of the data of the leaves at each level in a map. Once we have computed the sums for all levels, Iterate through the map and compute the multiplication of the sums of data for each level.
C++14
#include <bits/stdc++.h> using namespace std; struct Node { int data; Node *left, *right; }; Node* newNode( int data) { Node* node = new Node; node->data = data; node->left = node->right = nullptr; return node; } void dfs(Node* root, int level, unordered_map< int , int >& sums) { if (root == nullptr) { return ; } if (root->left == nullptr && root->right == nullptr) { sums[level] += root->data; return ; } dfs(root->left, level + 1, sums); dfs(root->right, level + 1, sums); } int main() { Node* root = newNode(2); root->left = newNode(7); root->right = newNode(5); root->left->right = newNode(6); root->left->left = newNode(8); root->left->right->left = newNode(1); root->left->right->right = newNode(11); root->right->right = newNode(9); root->right->right->left = newNode(4); root->right->right->right = newNode(10); unordered_map< int , int > sums; dfs(root, 0, sums); long long ans = 1; for ( const auto & p : sums) { ans *= p.second; } cout << "Final product value = " << ans << endl; return 0; } |
Java
import java.util.HashMap; import java.util.Map; class Node { int data; Node left; Node right; Node( int data) { this .data = data; this .left = null ; this .right = null ; } } public class Main { public static void dfs(Node root, int level, Map<Integer, Integer> sums) { if (root == null ) { return ; } if (root.left == null && root.right == null ) { sums.put(level, sums.getOrDefault(level, 0 ) + root.data); return ; } dfs(root.left, level + 1 , sums); dfs(root.right, level + 1 , sums); } public static void main(String[] args) { Node root = new Node( 2 ); root.left = new Node( 7 ); root.right = new Node( 5 ); root.left.right = new Node( 6 ); root.left.left = new Node( 8 ); root.left.right.left = new Node( 1 ); root.left.right.right = new Node( 11 ); root.right.right = new Node( 9 ); root.right.right.left = new Node( 4 ); root.right.right.right = new Node( 10 ); Map<Integer, Integer> sums = new HashMap<>(); dfs(root, 0 , sums); int ans = 1 ; for ( int value : sums.values()) { ans *= value; } System.out.println( "Final product value = " + ans); } } |
Python3
# code from typing import Dict from collections import defaultdict class Node: def __init__( self , data): self .data = data self .left = None self .right = None def dfs(root: Node, level: int , sums: Dict [ int , int ]) - > None : if not root: return if not root.left and not root.right: sums[level] + = root.data return dfs(root.left, level + 1 , sums) dfs(root.right, level + 1 , sums) if __name__ = = '__main__' : root = Node( 2 ) root.left = Node( 7 ) root.right = Node( 5 ) root.left.right = Node( 6 ) root.left.left = Node( 8 ) root.left.right.left = Node( 1 ) root.left.right.right = Node( 11 ) root.right.right = Node( 9 ) root.right.right.left = Node( 4 ) root.right.right.right = Node( 10 ) sums = defaultdict( int ) dfs(root, 0 , sums) ans = 1 for value in sums.values(): ans * = value print ( "Final product value =" , ans) |
C#
using System; using System.Collections.Generic; class Node { public int data; public Node left, right; public Node( int data) { this .data = data; this .left = this .right = null ; } } class Program { static void dfs(Node root, int level, Dictionary< int , int > sums) { if (root == null ) { return ; } if (root.left == null && root.right == null ) { if (sums.ContainsKey(level)) { sums[level] += root.data; } else { sums[level] = root.data; } return ; } dfs(root.left, level + 1, sums); dfs(root.right, level + 1, sums); } static void Main( string [] args) { Node root = new Node(2); root.left = new Node(7); root.right = new Node(5); root.left.right = new Node(6); root.left.left = new Node(8); root.left.right.left = new Node(1); root.left.right.right = new Node(11); root.right.right = new Node(9); root.right.right.left = new Node(4); root.right.right.right = new Node(10); Dictionary< int , int > sums = new Dictionary< int , int >(); dfs(root, 0, sums); long ans = 1; foreach (KeyValuePair< int , int > p in sums) { ans *= p.Value; } Console.WriteLine( "Final product value = " + ans); } } // This code is contributed by sarojmcy2e |
Javascript
// Define the Node class class Node { constructor(data) { this .data = data; this .left = null ; this .right = null ; } } // Define the newNode function function newNode(data) { const node = new Node(data); return node; } // Define the dfs function function dfs(root, level, sums) { if (root === null ) { return ; } if (root.left === null && root.right === null ) { if (sums.has(level)) { sums.set(level, sums.get(level) + root.data); } else { sums.set(level, root.data); } return ; } dfs(root.left, level + 1, sums); dfs(root.right, level + 1, sums); } // Define the main function const root = newNode(2); root.left = newNode(7); root.right = newNode(5); root.left.right = newNode(6); root.left.left = newNode(8); root.left.right.left = newNode(1); root.left.right.right = newNode(11); root.right.right = newNode(9); root.right.right.left = newNode(4); root.right.right.right = newNode(10); const sums = new Map(); dfs(root, 0, sums); let ans = 1; for (const value of sums.values()) { ans *= value; } console.log(`Final product value = ${ans}`); |
Final product value = 208
Time Complexity: O(n), where n is the number of nodes in the binary tree
Auxiliary Space: O(h), where h is the height of the binary tree (space used by the call stack during recursion)
An Efficient Solution is to use Queue based level order traversal. While doing the traversal, process all different levels separately. For every processed level, check if it has leaves. If it has then compute sum of leaf nodes. Finally return product of all sums.
C++
/* Iterative C++ program to find sum of data of all leaves of a binary tree on same level and then multiply sums obtained of all levels. */ #include <bits/stdc++.h> using namespace std; // A Binary Tree Node struct Node { int data; struct Node *left, *right; }; // helper function to check if a Node is leaf of tree bool isLeaf(Node* root) { return (!root->left && !root->right); } /* Calculate sum of all leaf Nodes at each level and returns multiplication of sums */ int sumAndMultiplyLevelData(Node* root) { // Tree is empty if (!root) return 0; int mul = 1; /* To store result */ // Create an empty queue for level order traversal queue<Node*> q; // Enqueue Root and initialize height q.push(root); // Do level order traversal of tree while (1) { // NodeCount (queue size) indicates number of Nodes // at current level. int NodeCount = q.size(); // If there are no Nodes at current level, we are done if (NodeCount == 0) break ; // Initialize leaf sum for current level int levelSum = 0; // A boolean variable to indicate if found a leaf // Node at current level or not bool leafFound = false ; // Dequeue all Nodes of current level and Enqueue all // Nodes of next level while (NodeCount > 0) { // Process next Node of current level Node* Node = q.front(); /* if Node is a leaf, update sum at the level */ if (isLeaf(Node)) { leafFound = true ; levelSum += Node->data; } q.pop(); // Add children of Node if (Node->left != NULL) q.push(Node->left); if (Node->right != NULL) q.push(Node->right); NodeCount--; } // If we found at least one leaf, we multiply // result with level sum. if (leafFound) mul *= levelSum; } return mul; // Return result } // Utility function to create a new tree Node Node* newNode( int data) { Node* temp = new Node; temp->data = data; temp->left = temp->right = NULL; return temp; } // Driver program to test above functions int main() { Node* root = newNode(2); root->left = newNode(7); root->right = newNode(5); root->left->right = newNode(6); root->left->left = newNode(8); root->left->right->left = newNode(1); root->left->right->right = newNode(11); root->right->right = newNode(9); root->right->right->left = newNode(4); root->right->right->right = newNode(10); cout << "Final product value = " << sumAndMultiplyLevelData(root) << endl; return 0; } |
Java
/* Iterative Java program to find sum of data of all leaves of a binary tree on same level and then multiply sums obtained of all levels. */ /* importing the necessary class */ import java.util.LinkedList; import java.util.Queue; import java.util.Stack; /* Class containing left and right child of current node and key value*/ class Node { int data; Node left, right; public Node( int item) { data = item; left = right = null ; } } class BinaryTree { Node root; // helper function to check if a Node is leaf of tree boolean isLeaf(Node node) { return ((node.left == null ) && (node.right == null )); } /* Calculate sum of all leaf Nodes at each level and returns multiplication of sums */ int sumAndMultiplyLevelData() { return sumAndMultiplyLevelData(root); } int sumAndMultiplyLevelData(Node node) { // Tree is empty if (node == null ) { return 0 ; } int mul = 1 ; /* To store result */ // Create an empty queue for level order traversal LinkedList<Node> q = new LinkedList<Node>(); // Enqueue Root and initialize height q.add(node); // Do level order traversal of tree while ( true ) { // NodeCount (queue size) indicates number of Nodes // at current level. int NodeCount = q.size(); // If there are no Nodes at current level, we are done if (NodeCount == 0 ) { break ; } // Initialize leaf sum for current level int levelSum = 0 ; // A boolean variable to indicate if found a leaf // Node at current level or not boolean leafFound = false ; // Dequeue all Nodes of current level and Enqueue all // Nodes of next level while (NodeCount > 0 ) { Node node1; node1 = q.poll(); /* if Node is a leaf, update sum at the level */ if (isLeaf(node1)) { leafFound = true ; levelSum += node1.data; } // Add children of Node if (node1.left != null ) { q.add(node1.left); } if (node1.right != null ) { q.add(node1.right); } NodeCount--; } // If we found at least one leaf, we multiply // result with level sum. if (leafFound) { mul *= levelSum; } } return mul; // Return result } public static void main(String args[]) { /* creating a binary tree and entering the nodes */ BinaryTree tree = new BinaryTree(); tree.root = new Node( 2 ); tree.root.left = new Node( 7 ); tree.root.right = new Node( 5 ); tree.root.left.left = new Node( 8 ); tree.root.left.right = new Node( 6 ); tree.root.left.right.left = new Node( 1 ); tree.root.left.right.right = new Node( 11 ); tree.root.right.right = new Node( 9 ); tree.root.right.right.left = new Node( 4 ); tree.root.right.right.right = new Node( 10 ); System.out.println( "The final product value : " + tree.sumAndMultiplyLevelData()); } } // This code is contributed by Mayank Jaiswal |
Python3
"""Iterative Python3 program to find sum of data of all leaves of a binary tree on same level and then multiply sums obtained of all levels.""" # A Binary Tree Node # Utility function to create a # new tree Node class newNode: def __init__( self , data): self .data = data self .left = self .right = None # helper function to check if a # Node is leaf of tree def isLeaf(root) : return ( not root.left and not root.right) """ Calculate sum of all leaf Nodes at each level and returns multiplication of sums """ def sumAndMultiplyLevelData( root) : # Tree is empty if ( not root) : return 0 mul = 1 """ To store result """ # Create an empty queue for level # order traversal q = [] # Enqueue Root and initialize height q.append(root) # Do level order traversal of tree while ( 1 ): # NodeCount (queue size) indicates # number of Nodes at current level. NodeCount = len (q) # If there are no Nodes at current # level, we are done if (NodeCount = = 0 ) : break # Initialize leaf sum for # current level levelSum = 0 # A boolean variable to indicate # if found a leaf Node at current # level or not leafFound = False # Dequeue all Nodes of current level # and Enqueue all Nodes of next level while (NodeCount > 0 ) : # Process next Node of current level Node = q[ 0 ] """ if Node is a leaf, update sum at the level """ if (isLeaf(Node)) : leafFound = True levelSum + = Node.data q.pop( 0 ) # Add children of Node if (Node.left ! = None ) : q.append(Node.left) if (Node.right ! = None ) : q.append(Node.right) NodeCount - = 1 # If we found at least one leaf, # we multiply result with level sum. if (leafFound) : mul * = levelSum return mul # Return result # Driver Code if __name__ = = '__main__' : root = newNode( 2 ) root.left = newNode( 7 ) root.right = newNode( 5 ) root.left.right = newNode( 6 ) root.left.left = newNode( 8 ) root.left.right.left = newNode( 1 ) root.left.right.right = newNode( 11 ) root.right.right = newNode( 9 ) root.right.right.left = newNode( 4 ) root.right.right.right = newNode( 10 ) print ( "Final product value = " , sumAndMultiplyLevelData(root)) # This code is contributed # by SHUBHAMSINGH10 |
C#
/* Iterative C# program to find sum of data of all leaves of a binary tree on same level and then multiply sums obtained of all levels. */ /* importing the necessary class */ using System; using System.Collections.Generic; /* Class containing left and right child of current node and key value*/ public class Node { public int data; public Node left, right; public Node( int item) { data = item; left = right = null ; } } public class BinaryTree { Node root; // helper function to check if // a Node is leaf of tree bool isLeaf(Node node) { return ((node.left == null ) && (node.right == null )); } /* Calculate sum of all leaf Nodes at each level and returns multiplication of sums */ int sumAndMultiplyLevelData() { return sumAndMultiplyLevelData(root); } int sumAndMultiplyLevelData(Node node) { // Tree is empty if (node == null ) { return 0; } int mul = 1; /* To store result */ // Create an empty queue for level order traversal Queue<Node> q = new Queue<Node>(); // Enqueue Root and initialize height q.Enqueue(node); // Do level order traversal of tree while ( true ) { // NodeCount (queue size) indicates // number of Nodes at current level. int NodeCount = q.Count; // If there are no Nodes at current // level, we are done if (NodeCount == 0) { break ; } // Initialize leaf sum for current level int levelSum = 0; // A boolean variable to indicate if found a leaf // Node at current level or not bool leafFound = false ; // Dequeue all Nodes of current level and // Enqueue all Nodes of next level while (NodeCount > 0) { Node node1; node1 = q.Dequeue(); /* if Node is a leaf, update sum at the level */ if (isLeaf(node1)) { leafFound = true ; levelSum += node1.data; } // Add children of Node if (node1.left != null ) { q.Enqueue(node1.left); } if (node1.right != null ) { q.Enqueue(node1.right); } NodeCount--; } // If we found at least one leaf, we multiply // result with level sum. if (leafFound) { mul *= levelSum; } } return mul; // Return result } // Driver code public static void Main(String []args) { /* creating a binary tree and entering the nodes */ BinaryTree tree = new BinaryTree(); tree.root = new Node(2); tree.root.left = new Node(7); tree.root.right = new Node(5); tree.root.left.left = new Node(8); tree.root.left.right = new Node(6); tree.root.left.right.left = new Node(1); tree.root.left.right.right = new Node(11); tree.root.right.right = new Node(9); tree.root.right.right.left = new Node(4); tree.root.right.right.right = new Node(10); Console.WriteLine( "The final product value : " + tree.sumAndMultiplyLevelData()); } } // This code has been contributed by 29AjayKumar |
Javascript
<script> /* Iterative Javascript program to find sum of data of all leaves of a binary tree on same level and then multiply sums obtained of all levels. */ /* importing the necessary class */ /* Class containing left and right child of current node and key value*/ class Node { constructor(data) { this .data=data; this .left = this .right = null ; } } let root; // helper function to check if a Node is leaf of tree function isLeaf(node) { return ((node.left == null ) && (node.right == null )); } /* Calculate sum of all leaf Nodes at each level and returns multiplication of sums */ function sumAndMultiplyLevelData(node) { // Tree is empty if (node == null ) { return 0; } let mul = 1; /* To store result */ // Create an empty queue for level order traversal let q = []; // Enqueue Root and initialize height q.push(node); // Do level order traversal of tree while ( true ) { // NodeCount (queue size) indicates number of Nodes // at current level. let NodeCount = q.length; // If there are no Nodes at current level, we are done if (NodeCount == 0) { break ; } // Initialize leaf sum for current level let levelSum = 0; // A boolean variable to indicate if found a leaf // Node at current level or not let leafFound = false ; // Dequeue all Nodes of current level and Enqueue all // Nodes of next level while (NodeCount > 0) { let node1= q.shift(); /* if Node is a leaf, update sum at the level */ if (isLeaf(node1)) { leafFound = true ; levelSum += node1.data; } // Add children of Node if (node1.left != null ) { q.push(node1.left); } if (node1.right != null ) { q.push(node1.right); } NodeCount--; } // If we found at least one leaf, we multiply // result with level sum. if (leafFound) { mul *= levelSum; } } return mul; // Return result } /* creating a binary tree and entering the nodes */ root = new Node(2); root.left = new Node(7); root.right = new Node(5); root.left.left = new Node(8); root.left.right = new Node(6); root.left.right.left = new Node(1); root.left.right.right = new Node(11); root.right.right = new Node(9); root.right.right.left = new Node(4); root.right.right.right = new Node(10); document.write( "The final product value : " + sumAndMultiplyLevelData(root)); // This code is contributed by rag2127 </script> |
Output:
Final product value = 208
Time Complexity: O(N) where N is the number of nodes in given binary tree.
Auxiliary Space: O(N) due to queue data structure.
This article is contributed by Mohammed Raqeeb. Please write comments if you find anything incorrect, or you want to share more information about the topic discussed above
Ready to dive in? Explore our Free Demo Content and join our DSA course, trusted by over 100,000 neveropen!