Saturday, November 16, 2024
Google search engine
HomeData Modelling & AINumber of sub-arrays that have at least one duplicate

Number of sub-arrays that have at least one duplicate

Given an array arr of n elements, the task is to find the number of the sub-arrays of the given array that contain at least one duplicate element.

Examples: 

Input: arr[] = {1, 2, 3} 
Output:
There is no sub-array with duplicate elements.

Input: arr[] = {4, 3, 4, 3} 
Output:
Possible sub-arrays are {4, 3, 4}, {4, 3, 4, 3} and {3, 4, 3} 

Approach: 

  • First, find the total number of sub-arrays that can be formed from the array and denote this by total then total = (n*(n+1))/2.
  • Now find the sub-arrays that have all the elements distinct (can be found out using window sliding technique) and denote this by unique.
  • Finally, the number of sub-arrays that have at least one element duplicate are (total – unique)

Below is the implementation of the above approach:

C++




// C++ implementation of the approach
#include <bits/stdc++.h>
#define ll long long int
using namespace std;
 
// Function to return the count of the
// sub-arrays that have at least one duplicate
ll count(ll arr[], ll n)
{
    ll unique = 0;
 
    // two pointers
    ll i = -1, j = 0;
 
    // to store frequencies of the numbers
    unordered_map<ll, ll> freq;
    for (j = 0; j < n; j++) {
        freq[arr[j]]++;
 
        // number is not distinct
        if (freq[arr[j]] >= 2) {
            i++;
            while (arr[i] != arr[j]) {
                freq[arr[i]]--;
                i++;
            }
            freq[arr[i]]--;
            unique = unique + (j - i);
        }
        else
            unique = unique + (j - i);
    }
 
    ll total = n * (n + 1) / 2;
 
    return total - unique;
}
 
// Driver code
int main()
{
    ll arr[] = { 4, 3, 4, 3 };
    ll n = sizeof(arr) / sizeof(arr[0]);
    cout << count(arr, n) << endl;
    return 0;
}


Java




// Java implementation of the approach
import java.util.*;
 
class GFG
{
 
// Function to return the count of the
// sub-arrays that have at least one duplicate
static Integer count(Integer arr[], Integer n)
{
    Integer unique = 0;
 
    // two pointers
    Integer i = -1, j = 0;
 
    // to store frequencies of the numbers
    Map<Integer, Integer> freq = new HashMap<>();
    for (j = 0; j < n; j++)
    {
        if(freq.containsKey(arr[j]))
        {
            freq.put(arr[j], freq.get(arr[j]) + 1);
        }
        else
        {
            freq.put(arr[j], 1);
        }
 
        // number is not distinct
        if (freq.get(arr[j]) >= 2)
        {
            i++;
            while (arr[i] != arr[j])
            {
                freq.put(arr[i], freq.get(arr[i]) - 1);
                i++;
            }
            freq.put(arr[i], freq.get(arr[i]) - 1);
            unique = unique + (j - i);
        }
        else
            unique = unique + (j - i);
    }
 
    Integer total = n * (n + 1) / 2;
 
    return total - unique;
}
 
// Driver code
public static void main(String[] args)
{
    Integer arr[] = { 4, 3, 4, 3 };
    Integer n = arr.length;
    System.out.println(count(arr, n));
}
}
 
// This code is contributed by 29AjayKumar


Python3




# Python3 implementation of the approach
from collections import defaultdict
 
# Function to return the count of the
# sub-arrays that have at least one duplicate
def count(arr, n):
 
    unique = 0
 
    # two pointers
    i, j = -1, 0
 
    # to store frequencies of the numbers
    freq = defaultdict(lambda:0)
    for j in range(0, n):
        freq[arr[j]] += 1
 
        # number is not distinct
        if freq[arr[j]] >= 2:
            i += 1
             
            while arr[i] != arr[j]:
                freq[arr[i]] -= 1
                i += 1
             
            freq[arr[i]] -= 1
            unique = unique + (j - i)
         
        else:
            unique = unique + (j - i)
     
    total = (n * (n + 1)) // 2
 
    return total - unique
 
# Driver Code
if __name__ == "__main__":
 
    arr = [4, 3, 4, 3]
    n = len(arr)
    print(count(arr, n))
 
# This code is contributed
# by Rituraj Jain


C#




// C# implementation of the approach
using System;
using System.Collections.Generic;            
 
class GFG
{
 
// Function to return the count of the
// sub-arrays that have at least one duplicate
static int count(int []arr, int n)
{
    int unique = 0;
 
    // two pointers
    int i = -1, j = 0;
 
    // to store frequencies of the numbers
    Dictionary<int,
               int> freq = new Dictionary<int,
                                          int>();
    for (j = 0; j < n; j++)
    {
        if(freq.ContainsKey(arr[j]))
        {
            freq[arr[j]] = freq[arr[j]] + 1;
        }
        else
        {
            freq.Add(arr[j], 1);
        }
 
        // number is not distinct
        if (freq[arr[j]] >= 2)
        {
            i++;
            while (arr[i] != arr[j])
            {
                freq[arr[i]] = freq[arr[i]] - 1;
                i++;
            }
            freq[arr[i]] = freq[arr[i]] - 1;
            unique = unique + (j - i);
        }
        else
            unique = unique + (j - i);
    }
 
    int total = n * (n + 1) / 2;
 
    return total - unique;
}
 
// Driver code
public static void Main(String[] args)
{
    int []arr = { 4, 3, 4, 3 };
    int n = arr.Length;
    Console.WriteLine(count(arr, n));
}
}
 
// This code is contributed by PrinciRaj1992


Javascript




<script>
// Javascript implementation of the approach
 
// Function to return the count of the
// sub-arrays that have at least one duplicate
function count(arr, n)
{
    let unique = 0;
 
    // two pointers
    let i = -1, j = 0;
 
    // to store frequencies of the numbers
    let freq = new Map();
    for (j = 0; j < n; j++) {
        if(freq.has(arr[j])){
            freq.set(arr[j], freq.get(arr[j]) + 1)
        }else{
            freq.set(arr[j], 1)
        }
 
        // number is not distinct
        if (freq.get(arr[j]) >= 2) {
            i++;
            while (arr[i] != arr[j]) {
                freq.set(arr[i], freq.get(arr[i]) - 1)
                i++;
            }
            freq.set(arr[i], freq.get(arr[i]) - 1)
            unique = unique + (j - i);
        }
        else
            unique = unique + (j - i);
    }
 
    let total =  n *(n + 1) / 2;
 
    return total - unique;
}
 
// Driver code
    let arr = [ 4, 3, 4, 3 ];
    let n = arr.length;
    document.write(count(arr, n) + "<br>");
 
// This code is contributed by _saurabh_jaiswal
</script>


Output

3

Complexity Analysis:

  • Time Complexity: O(N)
  • Auxiliary Space: O(N)
Feeling lost in the world of random DSA topics, wasting time without progress? It’s time for a change! Join our DSA course, where we’ll guide you on an exciting journey to master DSA efficiently and on schedule.
Ready to dive in? Explore our Free Demo Content and join our DSA course, trusted by over 100,000 neveropen!

RELATED ARTICLES

Most Popular

Recent Comments