Given a Binary tree, the task is to count the number of nodes with two children at a given level L.
Examples:
Input: 1 / \ 2 3 / \ \ 4 5 6 / / \ 7 8 9 L = 2 Output: 1 Input: 20 / \ 8 22 / \ / \ 5 3 4 25 / \ / \ \ 1 10 2 14 6 L = 3 Output: 2
Approach: Initialize a variable count = 0. Recursively traverse the tree in a level order manner. If the current level is same as the given level, then check whether the current node has two children. If it has two children then increment the variable count.
Below is the implementation of the above approach:
C++
// C++ program to find number of full nodes // at a given level #include <bits/stdc++.h> using namespace std; // A binary tree node struct Node { int data; struct Node *left, *right; }; // Utility function to allocate memory for a new node struct Node* newNode( int data) { struct Node* node = new ( struct Node); node->data = data; node->left = node->right = NULL; return (node); } // Function that returns the height of binary tree int height( struct Node* root) { if (root == NULL) return 0; int lheight = height(root->left); int rheight = height(root->right); return max(lheight, rheight) + 1; } // Level Order traversal to find the number of nodes // having two children void LevelOrder( struct Node* root, int level, int & count) { if (root == NULL) return ; if (level == 1 && root->left && root->right) count++; else if (level > 1) { LevelOrder(root->left, level - 1, count); LevelOrder(root->right, level - 1, count); } } // Returns the number of full nodes // at a given level int CountFullNodes( struct Node* root, int L) { // Stores height of tree int h = height(root); // Stores count of nodes at a given level // that have two children int count = 0; LevelOrder(root, L, count); return count; } // Driver code int main() { struct Node* root = newNode(7); root->left = newNode(5); root->right = newNode(6); root->left->left = newNode(8); root->left->right = newNode(1); root->left->left->left = newNode(2); root->left->left->right = newNode(11); root->right->left = newNode(3); root->right->right = newNode(9); root->right->right->right = newNode(13); root->right->right->left = newNode(10); root->right->right->right->left = newNode(4); root->right->right->right->right = newNode(12); int L = 3; cout << CountFullNodes(root, L); return 0; } |
Java
// Java program to find number of full nodes // at a given level class GFG { //INT class static class INT { int a; } // A binary tree node static class Node { int data; Node left, right; }; // Utility function to allocate memory for a new node static Node newNode( int data) { Node node = new Node(); node.data = data; node.left = node.right = null ; return (node); } // Function that returns the height of binary tree static int height(Node root) { if (root == null ) return 0 ; int lheight = height(root.left); int rheight = height(root.right); return Math.max(lheight, rheight) + 1 ; } // Level Order traversal to find the number of nodes // having two children static void LevelOrder( Node root, int level, INT count) { if (root == null ) return ; if (level == 1 && root.left!= null && root.right!= null ) count.a++; else if (level > 1 ) { LevelOrder(root.left, level - 1 , count); LevelOrder(root.right, level - 1 , count); } } // Returns the number of full nodes // at a given level static int CountFullNodes( Node root, int L) { // Stores height of tree int h = height(root); // Stores count of nodes at a given level // that have two children INT count = new INT(); count.a = 0 ; LevelOrder(root, L, count); return count.a; } // Driver code public static void main(String args[]) { Node root = newNode( 7 ); root.left = newNode( 5 ); root.right = newNode( 6 ); root.left.left = newNode( 8 ); root.left.right = newNode( 1 ); root.left.left.left = newNode( 2 ); root.left.left.right = newNode( 11 ); root.right.left = newNode( 3 ); root.right.right = newNode( 9 ); root.right.right.right = newNode( 13 ); root.right.right.left = newNode( 10 ); root.right.right.right.left = newNode( 4 ); root.right.right.right.right = newNode( 12 ); int L = 3 ; System.out.print( CountFullNodes(root, L)); } } // This code is contributed by Arnab Kundu |
Python3
# Python3 program to find number of # full nodes at a given level # INT class class INT : def __init__( self ): self .a = 0 # A binary tree node class Node: def __init__( self , data): self .left = None self .right = None self .data = data # Utility function to allocate # memory for a new node def newNode(data): node = Node(data) return node # Function that returns the # height of binary tree def height(root): if (root = = None ): return 0 ; lheight = height(root.left); rheight = height(root.right); return max (lheight, rheight) + 1 ; # Level Order traversal to find the # number of nodes having two children def LevelOrder(root, level, count): if (root = = None ): return ; if (level = = 1 and root.left ! = None and root.right ! = None ): count.a + = 1 elif (level > 1 ): LevelOrder(root.left, level - 1 , count); LevelOrder(root.right, level - 1 , count); # Returns the number of full nodes # at a given level def CountFullNodes(root, L): # Stores height of tree h = height(root); # Stores count of nodes at a # given level that have two children count = INT () LevelOrder(root, L, count); return count.a # Driver code if __name__ = = "__main__" : root = newNode( 7 ); root.left = newNode( 5 ); root.right = newNode( 6 ); root.left.left = newNode( 8 ); root.left.right = newNode( 1 ); root.left.left.left = newNode( 2 ); root.left.left.right = newNode( 11 ); root.right.left = newNode( 3 ); root.right.right = newNode( 9 ); root.right.right.right = newNode( 13 ); root.right.right.left = newNode( 10 ); root.right.right.right.left = newNode( 4 ); root.right.right.right.right = newNode( 12 ); L = 3 ; print (CountFullNodes(root, L)) # This code is contributed by rutvik_56 |
C#
// C# program to find number of full nodes // at a given level using System; class GFG { // INT class public class INT { public int a; } // A binary tree node public class Node { public int data; public Node left, right; }; // Utility function to allocate memory for a new node static Node newNode( int data) { Node node = new Node(); node.data = data; node.left = node.right = null ; return (node); } // Function that returns the height of binary tree static int height(Node root) { if (root == null ) return 0; int lheight = height(root.left); int rheight = height(root.right); return Math.Max(lheight, rheight) + 1; } // Level Order traversal to find the number of nodes // having two children static void LevelOrder( Node root, int level, INT count) { if (root == null ) return ; if (level == 1 && root.left!= null && root.right!= null ) count.a++; else if (level > 1) { LevelOrder(root.left, level - 1, count); LevelOrder(root.right, level - 1, count); } } // Returns the number of full nodes // at a given level static int CountFullNodes( Node root, int L) { // Stores height of tree int h = height(root); // Stores count of nodes at a given level // that have two children INT count = new INT(); count.a = 0; LevelOrder(root, L, count); return count.a; } // Driver code public static void Main(String []args) { Node root = newNode(7); root.left = newNode(5); root.right = newNode(6); root.left.left = newNode(8); root.left.right = newNode(1); root.left.left.left = newNode(2); root.left.left.right = newNode(11); root.right.left = newNode(3); root.right.right = newNode(9); root.right.right.right = newNode(13); root.right.right.left = newNode(10); root.right.right.right.left = newNode(4); root.right.right.right.right = newNode(12); int L = 3; Console.Write( CountFullNodes(root, L)); } } // This code is contributed by 29AjayKumar |
Javascript
<script> // Javascript program to find number // of full nodes at a given level // INT class let a = 0; // A binary tree node class Node { constructor(data) { this .left = null ; this .right = null ; this .data = data; } } // Utility function to allocate memory // for a new node function newNode(data) { let node = new Node(data); return (node); } // Function that returns the height // of binary tree function height(root) { if (root == null ) return 0; let lheight = height(root.left); let rheight = height(root.right); return Math.max(lheight, rheight) + 1; } // Level Order traversal to find the number // of nodes having two children function LevelOrder(root, level) { if (root == null ) return ; if (level == 1 && root.left != null && root.right != null ) a++; else if (level > 1) { LevelOrder(root.left, level - 1); LevelOrder(root.right, level - 1); } } // Returns the number of full nodes // at a given level function CountFullNodes(root, L) { // Stores height of tree let h = height(root); LevelOrder(root, L); return a; } // Driver code let root = newNode(7); root.left = newNode(5); root.right = newNode(6); root.left.left = newNode(8); root.left.right = newNode(1); root.left.left.left = newNode(2); root.left.left.right = newNode(11); root.right.left = newNode(3); root.right.right = newNode(9); root.right.right.right = newNode(13); root.right.right.left = newNode(10); root.right.right.right.left = newNode(4); root.right.right.right.right = newNode(12); let L = 3; document.write(CountFullNodes(root, L)); // This code is contributed by mukesh07 </script> |
2
Time Complexity: O(N)
Auxiliary Space: O(N)
Another Approach:
We can solve this problem by level order traversal using queue. In which we find the element which have two children at given level and increment the count variable.
Below is the implementation of above approach:
C++
// C++ program to find number of full nodes // at a given level #include <bits/stdc++.h> using namespace std; // A binary tree node struct Node { int data; struct Node* left; struct Node* right; }; // function to allocate memory for a new node struct Node* newNode( int data) { struct Node* node = new Node(); node->data = data; node->left = node->right = NULL; return node; } // function to return the number // of nodes int levelOrderTraversal(Node* root, int L) { int count = 0; int level = 0; queue<Node*> q; q.push(root); while (!q.empty()) { level++; int n = q.size(); for ( int i = 0; i < n; i++) { Node* front_node = q.front(); q.pop(); if (L == level && front_node->left != NULL && front_node->right != NULL) { count++; } if (front_node->left != NULL) q.push(front_node->left); if (front_node->right != NULL) q.push(front_node->right); } } return count; } // Driver Code int main() { Node* root = newNode(7); root->left = newNode(5); root->right = newNode(6); root->left->left = newNode(8); root->left->right = newNode(1); root->left->left->left = newNode(2); root->left->left->right = newNode(11); root->right->left = newNode(3); root->right->right = newNode(9); root->right->right->right = newNode(13); root->right->right->left = newNode(10); root->right->right->right->left = newNode(4); root->right->right->right->right = newNode(12); int L = 3; cout << levelOrderTraversal(root, L) << endl; return 0; } // This code is contributed by Kirti Agarwal |
Java
// Java program to find number of full nodes // at a given level import java.util.LinkedList; import java.util.Queue; // A binary tree node class Node { int data; Node left; Node right; // constructor to initialize data and left and right pointers Node( int data) { this .data = data; this .left = null ; this .right = null ; } } public class Main { // function to return the number of full nodes static int levelOrderTraversal(Node root, int L) { int count = 0 ; int level = 0 ; Queue<Node> q = new LinkedList<Node>(); q.add(root); while (!q.isEmpty()) { level++; int n = q.size(); for ( int i = 0 ; i < n; i++) { Node front_node = q.poll(); if (L == level && front_node.left != null && front_node.right != null ) { count++; } if (front_node.left != null ) q.add(front_node.left); if (front_node.right != null ) q.add(front_node.right); } } return count; } // Driver Code public static void main(String[] args) { Node root = new Node( 7 ); root.left = new Node( 5 ); root.right = new Node( 6 ); root.left.left = new Node( 8 ); root.left.right = new Node( 1 ); root.left.left.left = new Node( 2 ); root.left.left.right = new Node( 11 ); root.right.left = new Node( 3 ); root.right.right = new Node( 9 ); root.right.right.right = new Node( 13 ); root.right.right.left = new Node( 10 ); root.right.right.right.left = new Node( 4 ); root.right.right.right.right = new Node( 12 ); int L = 3 ; System.out.println(levelOrderTraversal(root, L)); } } |
Python
# Python3 program to find number of # full nodes at a given level # a binary tree node class Node: def __init__( self , data): self .data = data self .left = None self .right = None # function to allocate memory for a new node def newNode(data): return Node(data) # function to return the number # of nodes def levelOrderTraversal(root, L): count = 0 level = 0 q = [] q.append(root) while ( len (q) > 0 ): level + = 1 n = len (q) for i in range (n): front_node = q.pop( 0 ) if (L = = level and front_node.left is not None and front_node.right is not None ): count + = 1 if (front_node.left is not None ): q.append(front_node.left) if (front_node.right is not None ): q.append(front_node.right) return count; #driver code to test above functions root = newNode( 7 ); root.left = newNode( 5 ); root.right = newNode( 6 ); root.left.left = newNode( 8 ); root.left.right = newNode( 1 ); root.left.left.left = newNode( 2 ); root.left.left.right = newNode( 11 ); root.right.left = newNode( 3 ); root.right.right = newNode( 9 ); root.right.right.right = newNode( 13 ); root.right.right.left = newNode( 10 ); root.right.right.right.left = newNode( 4 ); root.right.right.right.right = newNode( 12 ); L = 3 ; print (levelOrderTraversal(root, L)) |
Javascript
// JavaScript program to find number of full nodes // at a given level // a binary tree node class Node{ constructor(data){ this .data = data; this .left = this .right = null ; } } // function to allcated memory for a new node function newNode(data){ return new Node(data); } // function to return the number // of nodes function levelOrderTraversal(root, L){ let count = 0; let level = 0; let q = []; q.push(root); while (q.length > 0){ level++; let n = q.length; for (let i = 0; i<n; i++){ let front_node = q.shift(); if (L == level && front_node.left != null && front_node.right != null ){ count++; } if (front_node.left) q.push(front_node.left); if (front_node.right) q.push(front_node.right); } } return count; } // driver code let root = newNode(7); root.left = newNode(5); root.right = newNode(6); root.left.left = newNode(8); root.left.right = newNode(1); root.left.left.left = newNode(2); root.left.left.right = newNode(11); root.right.left = newNode(3); root.right.right = newNode(9); root.right.right.right = newNode(13); root.right.right.left = newNode(10); root.right.right.right.left = newNode(4); root.right.right.right.right = newNode(12); let L = 3; console.log(levelOrderTraversal(root, L)); // THIS CODE IS CONTRIBUTED BY YASH AGARWAL(YASHAGARWAL2852002) |
C#
using System; using System.Collections.Generic; // C# program to find number of full nodes // at a given level public class Node { public int data; public Node left, right; public Node( int data) { this .data = data; this .left = this .right = null ; } } public class BinaryTree { public static int LevelOrderTraversal(Node root, int L) { int count = 0, level = 0; Queue<Node> q = new Queue<Node>(); q.Enqueue(root); while (q.Count > 0) { level++; int n = q.Count; for ( int i = 0; i < n; i++) { Node front_node = q.Dequeue(); if (L == level && front_node.left != null && front_node.right != null ) { count++; } if (front_node.left != null ) q.Enqueue(front_node.left); if (front_node.right != null ) q.Enqueue(front_node.right); } } return count; } public static void Main() { Node root = new Node(7); root.left = new Node(5); root.right = new Node(6); root.left.left = new Node(8); root.left.right = new Node(1); root.left.left.left = new Node(2); root.left.left.right = new Node(11); root.right.left = new Node(3); root.right.right = new Node(9); root.right.right.right = new Node(13); root.right.right.left = new Node(10); root.right.right.right.left = new Node(4); root.right.right.right.right = new Node(12); int L = 3; Console.WriteLine(LevelOrderTraversal(root, L)); } } |
2
Time Complexity: O(N)
Auxiliary Space: O(N)
Ready to dive in? Explore our Free Demo Content and join our DSA course, trusted by over 100,000 neveropen!