Wednesday, January 1, 2025
Google search engine
HomeData Modelling & AISort the array according to their cubes of each element

Sort the array according to their cubes of each element

Given an array arr[] of N integers, the task is to sort the array according to the cubes of each element.

Examples:  

Input: arr[] = { 4, -1, 0, -5, 6 } 
Output: -5 -1 0 4 6

Input: arr[] = { 12, 3, 0, 11 } 
Output: 0 3 11 12 

Approach: The idea is to use the Comparator function with an inbuilt sort function() to sort the array according to the cubes of its elements. Below is the comparator function used:  

bool comparator_function(int a, int b)
{
    x = pow(a, 3);
    y = pow(b, 3);
    return x < y;
}

Below is the implementation of the above approach:  

C++




// C++ program for the above approach
#include <bits/stdc++.h>
using namespace std;
 
// Comparator function which returns
// a^3 is less than b^3
bool cmp(int a, int b)
{
    int x = pow(a, 3);
    int y = pow(b, 3);
    return x < y;
}
 
// Function to sort the cubes of array
bool sortArr(int arr[], int n)
{
    // Sort the array
    sort(arr, arr + n, cmp);
 
    // Print the array
    for (int i = 0; i < n; i++) {
        cout << arr[i] << " ";
    }
}
 
// Driver Code
int main()
{
    // Given array
    int arr[] = { 4, -1, 0, -5, 6 };
    int n = sizeof(arr) / sizeof(arr[0]);
 
    // Function Call
    sortArr(arr, n);
    return 0;
}


Java




// Java program for the above approach
import java.util.*;
class GFG {
 
// Function to sort the cubes of array
static void sortArr(int arr[], int n)
{
    Integer[] ar = new Integer[n];
 
    for (int i = 0; i < n; i++)
        ar[i] = arr[i];
 
    // Sort the array
    Arrays.sort(ar, new Comparator<Integer>()
    {
        public int compare(Integer a, Integer b)
        {
            int x = (int)Math.pow(a, 3);
            int y = (int)Math.pow(b, 3);
            return (x < y) ? -1 : 1;
        }
    });
 
    // Print the array
    for (int i = 0; i < n; i++)
    {
        System.out.print(ar[i] + " ");
    }
}
 
// Driver code
public static void main(String[] args)
{
    // Given array
    int arr[] = { 4, -1, 0, -5, 6 };
    int n = arr.length;
 
    // Function Call
    sortArr(arr, n);
}
}
 
// This code is contributed by offbeat


Python3




# Python3 program for the above approach
 
# Function to sort the cubes of array
def sortArr(arr, n):
 
    # Make a list of tuples in
    # the form(cube of (num), num)
    arr = [(i * i * i, i) for i in arr];
     
    # Sort the array according to
    # the their respective cubes
    arr.sort()
      
    # Print the array
    for i in range(n):
        print(arr[i][1], end = " ");
 
# Driver Code
if __name__ == "__main__" :
 
    # Given array
    arr = [ 4, -1, 0, -5, 6 ];
    n = len(arr);
 
    # Function Call
    sortArr(arr, n);
 
# This code is contributed by AnkitRai01


C#




// C# program for the above approach
using System;
using System.Collections;
class compare : IComparer
{  
    // Call CaseInsensitiveComparer.Compare
    public int Compare(Object x,
                       Object y)
    {
        return (
          new CaseInsensitiveComparer()).Compare(x,y);
    }
}
   
class GFG{
 
// Function to sort the cubes of array
static void sortArr(int []arr,
                    int n)
{
    int[] ar = new int[n];
 
    for (int i = 0; i < n; i++)
        ar[i] = arr[i];
     
    IComparer cmp = new compare();
 
    // Sort the array
    Array.Sort(ar, cmp);
 
    // Print the array
    for (int i = 0; i < n; i++)
    {
        Console.Write(ar[i] + " ");
    }
}
 
// Driver code
public static void Main(String[] args)
{
    // Given array
    int []arr = {4, -1, 0, -5, 6};
    int n = arr.Length;
 
    // Function Call
    sortArr(arr, n);
}
}
 
// This code is contributed by gauravrajput1


Javascript




<script>
//Javascript implementation to check whether
// K times of a element is present in
// the array
 
// Function to sort the cubes of array
function sortArr(arr, n)
{
    // Sort the array
    arr.sort( function( a , b){
        var x = Math.pow(a,3);
        var y = Math.pow(b,3);
        if(x > y) return 1;
        if(x < y) return -1;
        return 0;
    });
 
    // Print the array
    for (var i = 0; i < n; i++) {
        document.write(arr[i] + " ");
    }
}
 
// Driver program to test above
var arr = [ 4, -1, 0, -5, 6 ];
var n = arr.length;
sortArr(arr, n);
// This code is contributed by shivani.
</script>


Output: 

-5 -1 0 4 6

 

Time Complexity: O(N*log N), where N is the number of elements in the array. 

Space Complexity : O(1) , as it only uses a constant amount of extra memory to sort the array and print the result

Feeling lost in the world of random DSA topics, wasting time without progress? It’s time for a change! Join our DSA course, where we’ll guide you on an exciting journey to master DSA efficiently and on schedule.
Ready to dive in? Explore our Free Demo Content and join our DSA course, trusted by over 100,000 neveropen!

RELATED ARTICLES

Most Popular

Recent Comments