Saturday, January 11, 2025
Google search engine
HomeData Modelling & AIPrint the nodes of binary tree as they become the leaf node

Print the nodes of binary tree as they become the leaf node

Given a binary tree. First print all leaf nodes, after that remove all the leaf nodes from the tree and now print all the new formed leaf nodes and keep doing this until all the nodes are removed from the tree.

Examples

Input :  
              8
             / \
           3    10
          / \   / \
         1  6  14  4
        / \
       7   13

Output : 
4 6 7 13 14
1 10
3
8

Source :Flipkart On Campus Recruitment

Approach : The idea is to perform simple dfs and assign different values to each node on the basis of following conditions: 

  1. Initially assign all the nodes with value as 0.
  2. Now, Assign all the nodes with the value as (maximum value of both child)+1.

Tree before DFS: A temporary value zero is assigned to all of the nodes. 

before dfs

Tree after DFS: Nodes are assigned with the value as (maximum value of both child)+1

after dfs

Now, you can see in the above tree that after all the values are assigned to each node, the task now reduces to print the tree on the basis of increasing order of node values assigned to them.

Below is the implementation of above approach:

C++




// C++ program to print the nodes of binary
// tree as they become the leaf node
 
#include <bits/stdc++.h>
using namespace std;
 
// Binary tree node
struct Node {
    int data;
    int order;
    struct Node* left;
    struct Node* right;
};
 
// Utility function to allocate a new node
struct Node* newNode(int data, int order)
{
    struct Node* node = new Node;
    node->data = data;
    node->order = order;
    node->left = NULL;
    node->right = NULL;
 
    return (node);
}
 
// Function for postorder traversal of tree and
// assigning values to nodes
void Postorder(struct Node* node, vector<pair<int, int> >& v)
{
    if (node == NULL)
        return;
 
    /* first recur on left child */
    Postorder(node->left, v);
 
    /* now recur on right child */
    Postorder(node->right, v);
 
    // If current node is leaf node, it's order will be 1
    if (node->right == NULL && node->left == NULL) {
        node->order = 1;
 
        // make pair of assigned value and tree value
        v.push_back(make_pair(node->order, node->data));
    }
    else {
        // otherwise, the order will be:
        // max(left_child_order, right_child_order) + 1
        node->order = max((node->left)->order, (node->right)->order) + 1;
 
        // make pair of assigned value and tree value
        v.push_back(make_pair(node->order, node->data));
    }
}
 
// Function to print leaf nodes in
// the given order
void printLeafNodes(int n, vector<pair<int, int> >& v)
{
    // Sort the vector in increasing order of
    // assigned node values
    sort(v.begin(), v.end());
 
    for (int i = 0; i < n; i++) {
        if (v[i].first == v[i + 1].first)
            cout << v[i].second << " ";
 
        else
            cout << v[i].second << "\n";
    }
}
 
// Driver Code
int main()
{
    struct Node* root = newNode(8, 0);
    root->left = newNode(3, 0);
    root->right = newNode(10, 0);
    root->left->left = newNode(1, 0);
    root->left->right = newNode(6, 0);
    root->right->left = newNode(14, 0);
    root->right->right = newNode(4, 0);
    root->left->left->left = newNode(7, 0);
    root->left->left->right = newNode(13, 0);
 
    int n = 9;
 
    vector<pair<int, int> > v;
 
    Postorder(root, v);
    printLeafNodes(n, v);
 
    return 0;
}


Java




// Java program to print the nodes of binary
// tree as they become the leaf node
import java.util.*;
 
class GFG
{
 
// Binary tree node
static class Node
{
    int data;
    int order;
    Node left;
    Node right;
};
 
static class Pair
{
    int first,second;
     
    Pair(int a,int b)
    {
        first = a;
        second = b;
    }
}
 
// Utility function to allocate a new node
static Node newNode(int data, int order)
{
    Node node = new Node();
    node.data = data;
    node.order = order;
    node.left = null;
    node.right = null;
 
    return (node);
}
static Vector<Pair> v = new Vector<Pair>();
 
// Function for postorder traversal of tree and
// assigning values to nodes
static void Postorder(Node node)
{
    if (node == null)
        return;
 
    /* first recur on left child */
    Postorder(node.left);
 
    /* now recur on right child */
    Postorder(node.right);
 
    // If current node is leaf node, it's order will be 1
    if (node.right == null && node.left == null)
    {
        node.order = 1;
 
        // make pair of assigned value and tree value
        v.add(new Pair(node.order, node.data));
    }
    else
    {
        // otherwise, the order will be:
        // max(left_child_order, right_child_order) + 1
        node.order = Math.max((node.left).order, (node.right).order) + 1;
 
        // make pair of assigned value and tree value
        v.add(new Pair(node.order, node.data));
    }
}
static class Sort implements Comparator<Pair>
{
    // Used for sorting in ascending order of
    // roll number
    public int compare(Pair a, Pair b)
    {
        if(a.first != b.first)
        return (a.first - b.first);
        else
        return (a.second-b.second);
    }
}
 
// Function to print leaf nodes in
// the given order
static void printLeafNodes(int n)
{
    // Sort the vector in increasing order of
    // assigned node values
    Collections.sort(v,new Sort());
    for (int i = 0; i < v.size(); i++)
    {
        if (i != v.size()-1 && v.get(i).first == v.get(i + 1).first)
            System.out.print( v.get(i).second + " ");
 
        else
            System.out.print( v.get(i).second + "\n");
    }
}
 
 
// Driver Code
public static void main(String args[])
{
    Node root = newNode(8, 0);
    root.left = newNode(3, 0);
    root.right = newNode(10, 0);
    root.left.left = newNode(1, 0);
    root.left.right = newNode(6, 0);
    root.right.left = newNode(14, 0);
    root.right.right = newNode(4, 0);
    root.left.left.left = newNode(7, 0);
    root.left.left.right = newNode(13, 0);
 
    int n = 9;
 
    Postorder(root);
    printLeafNodes(n);
}
}
 
// This code is contributed by Arnab Kundu


Python3




# Python3 program to print the nodes of binary
# tree as they become the leaf node
 
# Binary tree node
class newNode:
     
    def __init__(self, data,order):
        self.data = data
        self.order=order
        self.left = None
        self.right = None
 
# Function for postorder traversal of tree and
# assigning values to nodes
def Postorder(node,v):
    if (node == None):
        return
     
    """ first recur on left child """
    Postorder(node.left, v)
     
    """ now recur on right child """
    Postorder(node.right, v)
     
    # If current node is leaf node,
    # it's order will be 1
    if (node.right == None and
        node.left == None):
        node.order = 1
         
        # make pair of assigned value and tree value
        v[0].append([node.order, node.data])
     
    else:
         
        # otherwise, the order will be:
        # max(left_child_order, right_child_order) + 1
        node.order = max((node.left).order,
                         (node.right).order) + 1
         
        # make pair of assigned value and tree value
        v[0].append([node.order, node.data])
         
# Function to print leaf nodes in
# the given order
def printLeafNodes(n, v):
     
    # Sort the vector in increasing order of
    # assigned node values
    v=sorted(v[0])
    for i in range(n - 1):
        if (v[i][0]== v[i + 1][0]):
            print(v[i][1], end = " ")
        else:
            print(v[i][1])
    if (v[-1][0]== v[-2][0]):
            print(v[-1][1], end = " ")
    else:
        print(v[-1][1])
     
# Driver Code
root = newNode(8, 0)
root.left = newNode(3, 0)
root.right = newNode(10, 0)
root.left.left = newNode(1, 0)
root.left.right = newNode(6, 0)
root.right.left = newNode(14, 0)
root.right.right = newNode(4, 0)
root.left.left.left = newNode(7, 0)
root.left.left.right = newNode(13, 0)
 
n = 9
v = [[] for i in range(1)]
 
Postorder(root, v)
printLeafNodes(n, v)
 
# This code is contributed by SHUBHAMSINGH10


C#




// C# program to print the nodes of binary
// tree as they become the leaf node
using System;
using System.Collections.Generic;
 
class GFG
{
 
// Binary tree node
public class Node
{
    public int data;
    public int order;
    public Node left;
    public Node right;
};
 
public class Pair
{
    public int first,second;
     
    public Pair(int a,int b)
    {
        first = a;
        second = b;
    }
}
 
// Utility function to allocate a new node
static Node newNode(int data, int order)
{
    Node node = new Node();
    node.data = data;
    node.order = order;
    node.left = null;
    node.right = null;
 
    return (node);
}
 
static List<Pair> v = new List<Pair>();
 
// Function for postorder traversal of
// tree and assigning values to nodes
static void Postorder(Node node)
{
    if (node == null)
        return;
 
    /* first recur on left child */
    Postorder(node.left);
 
    /* now recur on right child */
    Postorder(node.right);
 
    // If current node is leaf node,
    // it's order will be 1
    if (node.right == null &&
        node.left == null)
    {
        node.order = 1;
 
        // make pair of assigned value
        // and tree value
        v.Add(new Pair(node.order, node.data));
    }
    else
    {
        // otherwise, the order will be:
        // Max(left_child_order,
        //     right_child_order) + 1
        node.order = Math.Max((node.left).order,
                              (node.right).order) + 1;
 
        // make pair of assigned value
        // and tree value
        v.Add(new Pair(node.order, node.data));
    }
}
 
// Used for sorting in ascending order
// of roll number
public static int compare(Pair a, Pair b)
{
    if(a.first != b.first)
        return (a.first - b.first);
    else
        return (a.second - b.second);
}
 
// Function to print leaf nodes in
// the given order
static void printLeafNodes(int n)
{
    // Sort the List in increasing order
    // of assigned node values
    v.Sort(compare);
    for (int i = 0; i < v.Count; i++)
    {
        if (i != v.Count - 1 &&
            v[i].first == v[i + 1].first)
            Console.Write(v[i].second + " ");
 
        else
            Console.Write(v[i].second + "\n");
    }
}
 
// Driver Code
public static void Main(String[] args)
{
    Node root = newNode(8, 0);
    root.left = newNode(3, 0);
    root.right = newNode(10, 0);
    root.left.left = newNode(1, 0);
    root.left.right = newNode(6, 0);
    root.right.left = newNode(14, 0);
    root.right.right = newNode(4, 0);
    root.left.left.left = newNode(7, 0);
    root.left.left.right = newNode(13, 0);
 
    int n = 9;
 
    Postorder(root);
    printLeafNodes(n);
}
}
 
// This code is contributed
// by Arnab Kundu


Javascript




<script>
// Javascript program to print the nodes of binary
// tree as they become the leaf node
 
class Node
{
    constructor()
    {
        this.data = 0;
        this.order = 0;
        this.left = this.right = null;
    }
}
 
class Pair
{
    constructor(a, b)
    {
        this.first = a;
        this.second = b;
    }
}
 
// Utility function to allocate a new node
function newNode(data,order)
{
    let node = new Node();
    node.data = data;
    node.order = order;
    node.left = null;
    node.right = null;
   
    return (node);
}
 
let v = [];
 
// Function for postorder traversal of tree and
// assigning values to nodes
function Postorder(node)
{
    if (node == null)
        return;
   
    /* first recur on left child */
    Postorder(node.left);
   
    /* now recur on right child */
    Postorder(node.right);
   
    // If current node is leaf node, it's order will be 1
    if (node.right == null && node.left == null)
    {
        node.order = 1;
   
        // make pair of assigned value and tree value
        v.push(new Pair(node.order, node.data));
    }
    else
    {
        // otherwise, the order will be:
        // max(left_child_order, right_child_order) + 1
        node.order = Math.max((node.left).order, (node.right).order) + 1;
   
        // make pair of assigned value and tree value
        v.push(new Pair(node.order, node.data));
    }
}
 
// Function to print leaf nodes in
// the given order
function printLeafNodes(n)
{
 
    // Sort the vector in increasing order of
    // assigned node values
    v.sort(function(a,b){
        if(a.first != b.first)
            return (a.first - b.first);
        else
            return (a.second-b.second);})
    for (let i = 0; i < v.length; i++)
    {
        if (i != v.length-1 && v[i].first == v[i+1].first)
            document.write( v[i].second + " ");
   
        else
            document.write( v[i].second + "<br>");
    }
}
 
// Driver Code
let root = newNode(8, 0);
root.left = newNode(3, 0);
root.right = newNode(10, 0);
root.left.left = newNode(1, 0);
root.left.right = newNode(6, 0);
root.right.left = newNode(14, 0);
root.right.right = newNode(4, 0);
root.left.left.left = newNode(7, 0);
root.left.left.right = newNode(13, 0);
 
let n = 9;
 
Postorder(root);
printLeafNodes(n);
 
// This code is contributed by avanitrachhadiya2155
</script>


Output

4 6 7 13 14
1 10
3
8

Complexity Analysis:

  • Time Complexity : O(nlogn) 
  • Auxiliary Space : O(n), where n is the number of nodes in the given Binary Tree.
Feeling lost in the world of random DSA topics, wasting time without progress? It’s time for a change! Join our DSA course, where we’ll guide you on an exciting journey to master DSA efficiently and on schedule.
Ready to dive in? Explore our Free Demo Content and join our DSA course, trusted by over 100,000 neveropen!

RELATED ARTICLES

Most Popular

Recent Comments