Given a directed graph containing N vertices and M edges, the task is to find all the dependencies of each vertex in the graph and the vertex with the minimum dependency.
A directed graph (or digraph) is a set of nodes connected by edges, where the edges have a direction associated with them.
For example, an arc (x, y) is considered to be directed from x to y, and the arc (y, x) is the inverted link. Y is a direct successor of x, and x is a direct predecessor of y.
The dependency is the number of connections to different vertices which are dependent on the current vertex.
Examples:
Input:
Output:
Vertex 1 dependencies -> 2-> 3
Vertex 2 dependencies -> 3-> 1
Vertex 3 dependencies -> 1-> 2
Node 1 has the minimum number of dependency of 2.
Explanation:
Vertex 1 is dependent on 2 and 3.
Similarly, vertex 2 and 3 on (3, 1) and (1, 2) respectively.
Therefore, the minimum number of dependency among all vertices is 2.
Input:
Output:
Vertex 1 dependency -> 2-> 3-> 4-> 5-> 6
Vertex 2 dependency -> 6
Vertex 3 dependency -> 4-> 5-> 6
Vertex 4 dependency -> 5-> 6
Vertex 5 dependency -> 6
Vertex 6 is not dependent on any vertex.
Node 6 has the minimum dependency of 0
Explanation:
Vertex 1 is dependent on (3, 4, 5, 6, 7). Similarly, vertex 2 on (6), vertex 3 on (4, 5, 6), vertex 4 on (5, 6), vertex 5 on (6) and vertex 6 is not dependent on any.
Therefore, the minimum number of dependency among all vertices is 0.
Approach: The idea is to use depth-first search(DFS) to solve this problem.
- Get the directed graph as the input.
- Perform the DFS on the graph and explore all the nodes of the graph.
- While exploring the neighbours of the node, add 1 to count and finally return the count which signifies the number of dependencies.
- Finally, find the node with the minimum number of dependencies.
Below is the implementation of the above approach:
CPP
// C++ program to find the // dependency of each node #include <bits/stdc++.h> using namespace std; // Defining the graph class Graph { // Variable to store the // number of vertices int V; // Adjacency list list< int >* adjList; // Initializing the graph public : Graph( int v) { V = v; adjList = new list< int >[V]; } // Adding edges void addEdge( int u, int v, bool bidir = true ) { adjList[u].push_back(v); if (bidir) { adjList[u].push_back(v); } } // Performing DFS on each node int dfs( int src) { // Map is used to mark // the current node as visited map< int , bool > visited; vector< int > dependent; int count = 0; stack< int > s; // Push the current vertex // to the stack which // stores the result s.push(src); visited[src] = true ; // Traverse through the vertices // until the stack is empty while (!s.empty()) { int n = s.top(); s.pop(); // Recur for all the vertices // adjacent to this vertex for ( auto i : adjList[n]) { // If the vertices are // not visited if (!visited[i]) { dependent.push_back(i + 1); count++; // Mark the vertex as // visited visited[i] = true ; // Push the current vertex to // the stack which stores // the result s.push(i); } } } // If the vertex has 0 dependency if (!count) { cout << "Vertex " << src + 1 << " is not dependent on any vertex.\n" ; return count; } cout << "Vertex " << src + 1 << " dependency " ; for ( auto i : dependent) { cout << "-> " << i; } cout << "\n" ; return count; } }; // Function to find the // dependency of each node void operations( int arr[][2], int n, int m) { // Creating a new graph Graph g(n); for ( int i = 0; i < m; i++) { g.addEdge(arr[i][0], arr[i][1], false ); } int ans = INT_MAX; int node = 0; // Iterating through the graph for ( int i = 0; i < n; i++) { int c = g.dfs(i); // Finding the node with // minimum number of // dependency if (c < ans) { ans = c; node = i + 1; } } cout << "Node " << node << "has minimum dependency of " << ans; } // Driver code int main() { int n, m; n = 6, m = 6; // Defining the edges of the // graph int arr[][2] = { { 0, 1 }, { 0, 2 }, { 2, 3 }, { 4, 5 }, { 3, 4 }, { 1, 5 } }; operations(arr, n, m); return 0; } |
Java
// Java program to find the // dependency of each node import java.util.*; class Graph { // Variable to store the // number of vertices int V; // Adjacency list List<Integer>[] adjList; // Initializing the graph public Graph( int v) { V = v; adjList = new ArrayList[V]; for ( int i = 0 ; i < V; i++) adjList[i] = new ArrayList<>(); } // Adding edges void addEdge( int u, int v, boolean bidir) { adjList[u].add(v); if (bidir) adjList[v].add(u); } // Performing DFS on each node int dfs( int src) { // Map is used to mark // the current node as visited Map<Integer, Boolean> visited = new HashMap<>(); List<Integer> dependent = new ArrayList<>(); int count = 0 ; Stack<Integer> s = new Stack<Integer>(); // Push the current vertex // to the stack which // stores the result s.push(src); visited.put(src, true ); // Traverse through the vertices // until the stack is empty while (!s.empty()) { int n = s.peek(); s.pop(); // Recur for all the vertices // adjacent to this vertex for ( int i : adjList[n]) { // If the vertices are // not visited if (!visited.containsKey(i)) { dependent.add(i + 1 ); count++; // Mark the vertex as // visited visited.put(i, true ); // Push the current vertex to // the stack which stores // the result s.push(i); } } } // If the vertex has 0 dependency if (count!= 0 ) { System.out.print( "Vertex " + (src + 1 ) + " is not dependent on any vertex.\n" ); return count; } System.out.print( "Vertex " + (src + 1 ) + " dependency " ); for ( int i : dependent) { System.out.print( "-> " + i); } System.out.println(); return count; } } class GFG { // Function to find the // dependency of each node static void operations( int arr[][], int n, int m) { // Creating a new graph Graph g = new Graph(n); for ( int i = 0 ; i < m; i++) { g.addEdge(arr[i][ 0 ], arr[i][ 1 ], false ); } int ans = Integer.MAX_VALUE; int node = 0 ; // Iterating through the graph for ( int i = 0 ; i < n; i++) { int c = g.dfs(i); // Finding the node with // minimum number of // dependency if (c < ans) { ans = c; node = i + 1 ; } } System.out.print( "Node " + node + "has minimum dependency of " + ans); } // Driver code public static void main(String[] args) { int n, m; n = 6 ; m = 6 ; // Defining the edges of the // graph int arr[][] = { { 0 , 1 }, { 0 , 2 }, { 2 , 3 }, { 4 , 5 }, { 3 , 4 }, { 1 , 5 } }; operations(arr, n, m); } } // This code is contributed by ishankhandelwals. |
Python3
# Python3 program to find the # dependency of each node # Adding edges def addEdge(u, v, bidir = True ): global adjList adjList[u].append(v) if (bidir): adjList[u].append(v) # Performing DFS on each node def dfs(src): global adjList, V # Map is used to mark # the current node as visited visited = [ False for i in range (V + 1 )] dependent = [] count = 0 s = [] # Push the current vertex # to the stack which # stores the result s.append(src) visited[src] = True # Traverse through the vertices # until the stack is empty while ( len (s) > 0 ): n = s[ - 1 ] del s[ - 1 ] # Recur for all the vertices # adjacent to this vertex for i in adjList[n]: # If the vertices are # not visited if ( not visited[i]): dependent.append(i + 1 ) count + = 1 # Mark the vertex as # visited visited[i] = True # Push the current vertex to # the stack which stores # the result s.append(i) # If the vertex has 0 dependency if ( not count): print ( "Vertex " , src + 1 , " is not dependent on any vertex." ) return count print ( "Vertex " ,src + 1 , " dependency " ,end = "") for i in dependent: print ( "-> " , i, end = "") print () return count # Function to find the # dependency of each node def operations(arr, n, m): # Creating a new graph global adjList for i in range (m): addEdge(arr[i][ 0 ], arr[i][ 1 ], False ) ans = 10 * * 18 node = 0 # Iterating through the graph for i in range (n): c = dfs(i) # Finding the node with # minimum number of # dependency if (c < ans): ans = c node = i + 1 print ( "Node" , node, "has minimum dependency of " , ans) # Driver code if __name__ = = '__main__' : V = 6 adjList = [[] for i in range (V + 1 )] n, m = 6 , 6 # Defining the edges of the # graph arr = [ [ 0 , 1 ], [ 0 , 2 ], [ 2 , 3 ], [ 4 , 5 ], [ 3 , 4 ], [ 1 , 5 ] ] operations(arr, n, m) # This code is contributed by mohit kumar 29. |
C#
// C# program to find the // dependency of each node using System; using System.Collections.Generic; // Defining the graph public class Graph { // Variable to store the // number of vertices int V; // Adjacency list List< int >[] adjList; // Initializing the graph public Graph( int v) { V = v; adjList = new List< int >[ V ]; } // Adding edges public void addEdge( int u, int v, bool bidir = true ) { adjList[u].Add(v); if (bidir) { adjList[u].Add(v); } } // Performing DFS on each node public int dfs( int src) { // Map is used to mark // the current node as visited Dictionary< int , bool > visited = new Dictionary< int , bool >(); List< int > dependent = new List< int >(); int count = 0; Stack< int > s = new Stack< int >(); // Push the current vertex // to the stack which // stores the result s.Push(src); visited.Add(src, true ); // Traverse through the vertices // until the stack is empty while (s.Count != 0) { int n = s.Pop(); // Recur for all the vertices // adjacent to this vertex foreach ( var i in adjList[n]) { // If the vertices are // not visited if (visited.ContainsKey(i) == false ) { dependent.Add(i + 1); count++; // Mark the vertex as // visited visited.Add(i, true ); // Push the current vertex to // the stack which stores // the result s.Push(i); } } } // If the vertex has 0 dependency if (count == 0) { Console.WriteLine( "Vertex " + (src + 1) + " is not dependent on any vertex." ); return count; } Console.Write( "Vertex " + (src + 1) + " dependency " ); foreach ( var i in dependent) { Console.Write( "-> " + i); } Console.WriteLine(); return count; } } // Function to find the // dependency of each node public void operations( int [, ] arr, int n, int m) { // Creating a new graph Graph g = new Graph(n); for ( int i = 0; i < m; i++) { g.addEdge(arr[i, 0], arr[i, 1], false ); } int ans = int .MaxValue; int node = 0; // Iterating through the graph for ( int i = 0; i < n; i++) { int c = g.dfs(i); // Finding the node with // minimum number of // dependency if (c < ans) { ans = c; node = i + 1; } } Console.WriteLine( "Node " + node + "has minimum dependency of " + ans); } // Driver code public static void Main() { int n, m; n = 6; m = 6; // Defining the edges of the // graph int [, ] arr = new int [, ] { { 0, 1 }, { 0, 2 }, { 2, 3 }, { 4, 5 }, { 3, 4 }, { 1, 5 } }; operations(arr, n, m); } // This code is contributed by ishankhandelwals. |
Javascript
// Javascript code // Defining the graph class Graph { // Variable to store the // number of vertices constructor(v){ this .V = v; this .adjList = new Array( this .V).fill( new Array()); } // Adding edges addEdge(u, v, bidir = true ) { this .adjList[u].push(v); if (bidir) { this .adjList[v].push(u); } } // Performing DFS on each node dfs(src) { // Map is used to mark // the current node as visited let visited = new Map(); let dependent = []; let count = 0; let s = []; // Push the current vertex // to the stack which // stores the result s.push(src); visited.set(src, true ); // Traverse through the vertices // until the stack is empty while (s.length > 0) { let n = s.pop(); // Recur for all the vertices // adjacent to this vertex this .adjList[n].forEach(i => { // If the vertices are // not visited if (!visited.get(i)) { dependent.push(i + 1); count++; // Mark the vertex as // visited visited.set(i, true ); // Push the current vertex to // the stack which stores // the result s.push(i); } }); } // If the vertex has 0 dependency if (!count) { console.log(`Vertex ${src + 1} is not dependent on any vertex.`); return count; } console.log(`Vertex ${src + 1} dependency `); dependent.forEach(i => { console.log(`-> ${i}`); }); return count; } } // Function to find the // dependency of each node function operations(arr, n, m) { // Creating a new graph let g = new Graph(n); for (let i = 0; i < m; i++) { g.addEdge(arr[i][0], arr[i][1], false ); } let ans = Number.MAX_VALUE; let node = 0; // Iterating through the graph for (let i = 0; i < n; i++) { let c = g.dfs(i); // Finding the node with // minimum number of // dependency if (c < ans) { ans = c; node = i + 1; } } console.log(`Node ${node} has minimum dependency of ${ans}`); } // Driver code ( function () { let n = 6, m = 6; // Defining the edges of the // graph let arr = [ [0, 1], [0, 2], [2, 3], [4, 5], [3, 4], [1, 5] ]; operations(arr, n, m); })(); // This code is contributed by ishankhandelwals. |
Vertex 1 dependency -> 2-> 3-> 4-> 5-> 6 Vertex 2 dependency -> 6 Vertex 3 dependency -> 4-> 5-> 6 Vertex 4 dependency -> 5-> 6 Vertex 5 dependency -> 6 Vertex 6 is not dependent on any vertex. Node 6has minimum dependency of 0
Time Complexity: O(V+E),The time complexity of the above program is O(V+E) where V is the number of vertices and E is the number of edges. We iterate through the graph and perform Depth First Search on each node. This takes O(V+E) time to complete.
Space Complexity: O(V),The space complexity of the above program is O(V). We are creating an adjacency list for the graph which takes O(V) space. We also create a stack and a map to keep track of the nodes which are visited. This takes O(V) space.
Ready to dive in? Explore our Free Demo Content and join our DSA course, trusted by over 100,000 neveropen!