Thursday, January 9, 2025
Google search engine
HomeData Modelling & AICount all Grandparent-Parent-Child Triplets in a binary tree whose sum is greater...

Count all Grandparent-Parent-Child Triplets in a binary tree whose sum is greater than X

Given an integer X and a binary tree, the task is to count the number of triplet triplets of nodes such that their sum is greater than X and they have a grandparent -> parent -> child relationship.
 

Example:
 

Input: X = 100

               10
         /           \
       1              22
    /    \          /    \
  35      4       15       67
 /  \    /  \    /  \     /  \
57  38  9   10  110 312  131 414
                    /          \
                   8            39
Output: 6
The triplets are:
22 -> 15 -> 110
22 -> 15 -> 312
15 -> 312 -> 8
22 -> 67 -> 131
22 -> 67 -> 414
67 -> 414 -> 39

Approach: The problem can be solved using a rolling sum up approach with a rolling period as 3 (grandparent -> parent -> child) 

  1. Traverse the tree in preorder or postorder (INORDER WON’T WORK)
  2. Maintain a stack where we maintain rolling sum with a rolling period as 3
  3. Whenever we have more than 3 elements in the stack and if the topmost value is greater than X, we increment the result by 1.
  4. When we move up the recursion tree we do a POP operation on the stack so that all the rolling sums of lower levels get removed from the stack.

Below is the implementation of the above approach:
 

C++




#include <iostream>
#include <vector>
 
using namespace std;
 
// Class to store node information
class Node {
public:
    int val;
    Node* left;
    Node* right;
 
    Node(int value = 0, Node* l = nullptr,
         Node* r = nullptr)
        : val(value)
        , left(l)
        , right(r)
    {
    }
};
 
// Stack to perform stack operations
class Stack {
public:
    vector<int> stack;
 
    int size() { return stack.size(); }
 
    int top()
    {
        return (size() > 0) ? stack[size() - 1] : 0;
    }
 
    void push(int val) { stack.push_back(val); }
 
    void pop()
    {
        if (size() >= 1) {
            stack.pop_back();
        }
        else {
            stack.clear();
        }
    }
 
    // Period is 3 to satisfy grandparent-parent-child
    // relationship
    void rolling_push(int val, int period = 3)
    {
 
        // Find the index of element to remove
        int to_remove_idx = size() - period;
 
        // If index is out of bounds then we remove nothing,
        // i.e, 0
        int to_remove = (to_remove_idx < 0)
                            ? 0
                            : stack[to_remove_idx];
 
        // For rolling sum what we want is that at each
        // index i, we remove out-of-period elements, but
        // since we are not maintaining a separate list of
        // actual elements, we can get the actual element by
        // taking diff between current and previous element.
        // So every time we remove an element, we also add
        // the element just before it, which is equivalent
        // to removing the actual value and not the rolling
        // sum.
 
        // If index is out of bounds or 0 then we add
        // nothing i.e, 0, because there is no previous
        // element
        int to_add = (to_remove_idx <= 0)
                         ? 0
                         : stack[to_remove_idx - 1];
 
        // If stack is empty then just push the value
        // Else add last element to current value to get
        // rolling sum then subtract out-of-period elements,
        // then finally add the element just before
        // out-of-period element
        if (size() <= 0) {
            push(val);
        }
        else {
            push(val + stack[size() - 1] - to_remove
                 + to_add);
        }
    }
 
    void show()
    {
        for (auto item : stack) {
            cout << item << " ";
        }
        cout << endl;
    }
};
 
// Global variables used by count_with_greater_sum()
int count = 0;
Stack s;
 
void count_with_greater_sum(Node* root_node, int x)
{
 
    if (!root_node) {
        return;
    }
 
    s.rolling_push(root_node->val);
 
    if (s.size() >= 3 && s.top() > x) {
        count++;
    }
 
    count_with_greater_sum(root_node->left, x);
    count_with_greater_sum(root_node->right, x);
 
    // Moving up the tree so pop the last element
    s.pop();
}
 
int main()
{
    Node* root = new Node(10);
 
    root->left = new Node(1);
    root->right = new Node(22);
 
    root->left->left = new Node(35);
    root->left->right = new Node(4);
 
    root->right->left = new Node(15);
    root->right->right = new Node(67);
 
    root->left->left->left = new Node(57);
    root->left->left->right = new Node(38);
 
    root->left->right->left = new Node(9);
    root->left->right->right = new Node(10);
 
    root->right->left->left = new Node(110);
    root->right->left->right = new Node(312);
 
    root->right->right->left = new Node(131);
    root->right->right->right = new Node(414);
 
    root->right->left->right->left = new Node(8);
 
    root->right->right->right->right = new Node(39);
 
    count_with_greater_sum(root, 100);
    cout << count << endl;
}


Python3




# Python3 implementation of the approach
 
# Class to store node information
class Node:
    def __init__(self, val = None, left = None, right = None):
        self.val = val
        self.left = left
        self.right = right
 
# Stack to perform stack operations
class Stack:
    def __init__(self):
        self.stack = []
 
    @property
    def size(self):
        return len(self.stack)
 
    def top(self):
        return self.stack[self.size - 1] if self.size > 0 else 0
 
    def push(self, val):
        self.stack.append(val)
 
    def pop(self):
        if self.size >= 1:
            self.stack.pop(self.size - 1)
        else:
            self.stack = []
 
    # Period is 3 to satisfy grandparent-parent-child relationship
    def rolling_push(self, val, period = 3):
         
        # Find the index of element to remove
        to_remove_idx = self.size - period
 
        # If index is out of bounds then we remove nothing, i.e, 0
        to_remove = 0 if to_remove_idx < 0 else self.stack[to_remove_idx]
 
        # For rolling sum what we want is that at each index i,
        # we remove out-of-period elements, but since we are not
        # maintaining a separate list of actual elements,
        # we can get the actual element by taking diff between current
        # and previous element. So every time we remove an element,
        # we also add the element just before it, which is
        # equivalent to removing the actual value and not the rolling sum.
 
        # If index is out of bounds or 0 then we add nothing
        # i.e, 0, because there is no previous element
        to_add = 0 if to_remove_idx <= 0 else self.stack[to_remove_idx - 1]
 
        # If stack is empty then just push the value
        # Else add last element to current value to get rolling sum
        # then subtract out-of-period elements,
        # then finally add the element just before out-of-period element
        self.push(val if self.size <= 0 else val + self.stack[self.size - 1]
            - to_remove + to_add)
 
    def show(self):
        for item in self.stack:
            print(item)
 
 
# Global variables used by count_with_greater_sum()
count = 0
s = Stack()
 
def count_with_greater_sum(root_node, x):
    global s, count
 
    if not root_node:
        return 0
 
    s.rolling_push(root_node.val)
 
    if s.size >= 3 and s.top() > x:
        count += 1
 
    count_with_greater_sum(root_node.left, x)
    count_with_greater_sum(root_node.right, x)
 
    # Moving up the tree so pop the last element
    s.pop()
 
 
if __name__ == '__main__':
    root = Node(10)
 
    root.left = Node(1)
    root.right = Node(22)
 
    root.left.left = Node(35)
    root.left.right = Node(4)
 
    root.right.left = Node(15)
    root.right.right = Node(67)
 
    root.left.left.left = Node(57)
    root.left.left.right = Node(38)
 
    root.left.right.left = Node(9)
    root.left.right.right = Node(10)
 
    root.right.left.left = Node(110)
    root.right.left.right = Node(312)
 
    root.right.right.left = Node(131)
    root.right.right.right = Node(414)
 
    root.right.left.right.left = Node(8)
 
    root.right.right.right.right = Node(39)
 
    count_with_greater_sum(root, 100)
 
    print(count)


Javascript




// Class to store node information
class Node {
  constructor(val = null, left = null, right = null) {
    this.val = val;
    this.left = left;
    this.right = right;
  }
}
 
// Stack to perform stack operations
class Stack {
  constructor() {
    this.stack = [];
  }
 
  get size() {
    return this.stack.length;
  }
 
  top() {
    return this.size > 0 ? this.stack[this.size - 1] : 0;
  }
 
  push(val) {
    this.stack.push(val);
  }
 
  pop() {
    if (this.size >= 1) {
      this.stack.pop();
    } else {
      this.stack = [];
    }
  }
 
  // Period is 3 to satisfy grandparent-parent-child relationship
  rolling_push(val, period = 3) {
    // Find the index of element to remove
    const to_remove_idx = this.size - period;
 
    // If index is out of bounds then we remove nothing, i.e, 0
    const to_remove = to_remove_idx < 0 ? 0 : this.stack[to_remove_idx];
     
     
        // For rolling sum what we want is that at each index i,
        // we remove out-of-period elements, but since we are not
        // maintaining a separate list of actual elements,
        // we can get the actual element by taking diff between current
        // and previous element. So every time we remove an element,
        // we also add the element just before it, which is
        // equivalent to removing the actual value and not the rolling sum.
 
        // If index is out of bounds or 0 then we add nothing
        // i.e, 0, because there is no previous element
 
    const to_add = to_remove_idx <= 0 ? 0 : this.stack[to_remove_idx - 1];
     
    // If stack is empty then just push the value
    // Else add last element to current value to get rolling sum
    // then subtract out-of-period elements,
    // then finally add the element just before out-of-period element
    this.push(
      val +
        (this.size <= 0 ? 0 : this.stack[this.size - 1]) -
        to_remove +
        to_add
    );
  }
 
  show() {
    for (const item of this.stack) {
      console.log(item);
    }
  }
}
 
// Global variables used by count_with_greater_sum()
let count = 0;
const s = new Stack();
 
function count_with_greater_sum(root_node, x) {
  if (!root_node) {
    return 0;
  }
 
  s.rolling_push(root_node.val);
 
  if (s.size >= 3 && s.top() > x) {
    count += 1;
  }
 
  count_with_greater_sum(root_node.left, x);
  count_with_greater_sum(root_node.right, x);
 
  // Moving up the tree so pop the last element
  s.pop();
}
 
const root = new Node(10);
 
root.left = new Node(1);
root.right = new Node(22);
 
root.left.left = new Node(35);
root.left.right = new Node(4);
 
root.right.left = new Node(15);
root.right.right = new Node(67);
 
root.left.left.left = new Node(57);
root.left.left.right = new Node(38);
 
root.left.right.left = new Node(9);
root.left.right.right = new Node(10);
 
root.right.left.left = new Node(110);
root.right.left.right = new Node(312);
 
root.right.right.left = new Node(131);
root.right.right.right = new Node(414);
 
root.right.left.right.left = new Node(8);
 
root.right.right.right.right = new Node(39);
 
count_with_greater_sum(root, 100);
 
console.log(count);
 
// This code is contributed by Prince


Java




import java.util.*;
 
class Node {
    int val;
    Node left;
    Node right;
 
    Node(int value, Node l, Node r)
    {
        val = value;
        left = l;
        right = r;
    }
 
    Node(int value) { this(value, null, null); }
}
 
class Stack {
    ArrayList<Integer> stack = new ArrayList<>();
 
    int size() { return stack.size(); }
 
    int top()
    {
        return (size() > 0) ? stack.get(size() - 1) : 0;
    }
 
    void push(int val) { stack.add(val); }
 
    void pop()
    {
        if (size() >= 1) {
            stack.remove(size() - 1);
        }
        else {
            stack.clear();
        }
    }
 
    void rolling_push(int val, int period)
    {
        int to_remove_idx = size() - period;
        int to_remove = (to_remove_idx < 0)
                            ? 0
                            : stack.get(to_remove_idx);
 
        int to_add = (to_remove_idx <= 0)
                         ? 0
                         : stack.get(to_remove_idx - 1);
 
        if (size() <= 0) {
            push(val);
        }
        else {
            push(val + stack.get(size() - 1) - to_remove
                 + to_add);
        }
    }
 
    void show()
    {
        for (int item : stack) {
            System.out.print(item + " ");
        }
        System.out.println();
    }
}
 
public class Main {
    static int count = 0;
    static Stack s = new Stack();
 
    static void count_with_greater_sum(Node root_node,
                                       int x)
    {
        if (root_node == null) {
            return;
        }
 
        s.rolling_push(root_node.val, 3);
 
        if (s.size() >= 3 && s.top() > x) {
            count++;
        }
 
        count_with_greater_sum(root_node.left, x);
        count_with_greater_sum(root_node.right, x);
 
        s.pop();
    }
 
    public static void main(String[] args)
    {
        Node root = new Node(10);
 
        root.left = new Node(1);
        root.right = new Node(22);
 
        root.left.left = new Node(35);
        root.left.right = new Node(4);
 
        root.right.left = new Node(15);
        root.right.right = new Node(67);
 
        root.left.left.left = new Node(57);
        root.left.left.right = new Node(38);
 
        root.left.right.left = new Node(9);
        root.left.right.right = new Node(10);
 
        root.right.left.left = new Node(110);
        root.right.left.right = new Node(312);
 
        root.right.right.left = new Node(131);
        root.right.right.right = new Node(414);
 
        root.right.left.right.left = new Node(8);
 
        root.right.right.right.right = new Node(39);
 
        count_with_greater_sum(root, 100);
        System.out.println(count);
    }
}


C#




using System;
using System.Collections.Generic;
using System.Collections;
using System.Linq;
// C# code addition
 
class Node {
    public int val;
    public Node left;
    public Node right;
 
    public Node(int value, Node l, Node r)
    {
        val = value;
        left = l;
        right = r;
    }
 
    public Node(int value){
        val = value;
        left = null;
        right = null;
    }
}
 
class stack {
    public List<int> st = new List<int>();
 
    public int size() { return st.Count; }
 
    public int top()
    {
        return (size() > 0) ? st[size() - 1]: 0;
    }
 
    public void push(int val) { st.Add(val); }
 
    public void pop()
    {
        if (size() >= 1) {
            st.RemoveAt(size() - 1);
        }
        else {
            st.Clear();
        }
    }
 
    public void rolling_push(int val, int period)
    {
        int to_remove_idx = size() - period;
        int to_remove = (to_remove_idx < 0)
                            ? 0
                            : st[to_remove_idx];
 
        int to_add = (to_remove_idx <= 0)
                         ? 0
                         : st[to_remove_idx - 1];
 
        if (size() <= 0) {
            push(val);
        }
        else {
            push(val + st[size() - 1]- to_remove
                 + to_add);
        }
    }
 
    public void show()
    {
        foreach(var item in st){
            Console.Write(item + " ");
        }
        Console.WriteLine();
    }
}
 
 
 
public class HelloWorld {
     
    static int count = 0;
    static stack s = new stack();
 
    static void count_with_greater_sum(Node root_node,
                                       int x)
    {
        if (root_node == null) {
            return;
        }
 
        s.rolling_push(root_node.val, 3);
 
        if (s.size() >= 3 && s.top() > x) {
            count++;
        }
 
        count_with_greater_sum(root_node.left, x);
        count_with_greater_sum(root_node.right, x);
 
        s.pop();
    }
     
    static void Main() {
        Node root = new Node(10);
 
        root.left = new Node(1);
        root.right = new Node(22);
 
        root.left.left = new Node(35);
        root.left.right = new Node(4);
 
        root.right.left = new Node(15);
        root.right.right = new Node(67);
 
        root.left.left.left = new Node(57);
        root.left.left.right = new Node(38);
 
        root.left.right.left = new Node(9);
        root.left.right.right = new Node(10);
 
        root.right.left.left = new Node(110);
        root.right.left.right = new Node(312);
 
        root.right.right.left = new Node(131);
        root.right.right.right = new Node(414);
 
        root.right.left.right.left = new Node(8);
 
        root.right.right.right.right = new Node(39);
 
        count_with_greater_sum(root, 100);
        Console.WriteLine(count);
    }
}
 
// The code is contributed by Arushi Jindal.


Output:

6

 

Efficient Approach: The problem can be solved by maintaining 3 variables called grandparent, parent, and child. It can be done in constant space without using other data structures. 

  1. Traverse the tree in preorder
  2. Maintain 3 variables called grandParent, parent, and child
  3. Whenever we have sum more than the target we can increase the count or print the triplet.

Below is the implementation of the above approach: 

C++




// CPP implementation to print
// the nodes having a single child
#include <bits/stdc++.h>
using namespace std;
 
// Class of the Binary Tree node
struct Node
{
  int data;
  Node *left, *right;
 
  Node(int x)
  {
    data = x;
    left = right = NULL;
  }
};
 
// global variable
int count = 0;
 
void preorder(Node* grandParent,
              Node* parent,
              Node* child,
              int sum)
{
  if(grandParent != NULL &&
     parent != NULL &&
     child != NULL &&
     (grandParent -> data +
      parent -> data +
      child->data) > sum)
  {
    count++;
    //uncomment below lines if you
    // want to print triplets
    /*System->out->print(grandParent
      ->data+"-->"+parent->data+"-->
      "+child->data);
      System->out->println();*/
  }
  if(child == NULL)
    return;
   
  preorder(parent, child,
           child -> left, sum);
  preorder(parent, child,
           child -> right, sum);
}
 
//Driver code
int main()
{
  Node *r10 = new Node(10);
  Node *r1 = new Node(1);
  Node *r22 = new Node(22);
  Node *r35 = new Node(35);
  Node *r4 = new Node(4);
  Node *r15 = new Node(15);
  Node *r67 = new Node(67);
  Node *r57 = new Node(57);
  Node *r38 = new Node(38);
  Node *r9 = new Node(9);
  Node *r10_2 = new Node(10);
  Node *r110 = new Node(110);
  Node *r312 = new Node(312);
  Node *r131 = new Node(131);
  Node *r414 = new Node(414);
  Node *r8 = new Node(8);
  Node *r39 = new Node(39);
 
  r10 -> left = r1;
  r10 -> right = r22;
  r1 -> left = r35;
  r1 -> right = r4;
  r22 -> left = r15;
  r22 -> right = r67;
  r35 -> left = r57;
  r35 -> right = r38;
  r4 -> left = r9;
  r4 -> right = r10_2;
  r15 -> left = r110;
  r15 -> right = r312;
  r67 -> left = r131;
  r67 -> right = r414;
  r312 -> left = r8;
  r414 -> right = r39;
 
  preorder(NULL, NULL,
           r10, 100);
  cout << cont;
}
 
// This code is contributed by Mohit Kumar 29


Java




class Node{
    int data;
    Node left;
    Node right;
    public Node(int data)
    {
        this.data=data;
    }
}
 class TreeTriplet {
    static int count=0; // global variable
    public void preorder(Node grandParent,Node parent,Node child,int sum)
    {
        if(grandParent!=null && parent!=null && child!=null && (grandParent.data+parent.data+child.data) > sum)
        {
            count++;
            //uncomment below lines if you want to print triplets
            /*System.out.print(grandParent.data+"-->"+parent.data+"-->"+child.data);
            System.out.println();*/           
        }
        if(child==null)
          return;       
        preorder(parent,child,child.left,sum);
        preorder(parent,child,child.right,sum);       
    }
    public static void main(String args[])
    {       
        Node r10 = new Node(10);
        Node r1 = new Node(1);
        Node r22 = new Node(22);
        Node r35 = new Node(35);
        Node r4 = new Node(4);
        Node r15 = new Node(15);
        Node r67 = new Node(67);
        Node r57 = new Node(57);
        Node r38 = new Node(38);
        Node r9 = new Node(9);
        Node r10_2 = new Node(10);
        Node r110 = new Node(110);
        Node r312 = new Node(312);
        Node r131 = new Node(131);
        Node r414 = new Node(414);
        Node r8 = new Node(8);
        Node r39 = new Node(39);
         
        r10.left=r1;
        r10.right=r22;
        r1.left=r35;
        r1.right=r4;
        r22.left=r15;
        r22.right=r67;
        r35.left=r57;
        r35.right=r38;
        r4.left=r9;
        r4.right=r10_2;
        r15.left=r110;
        r15.right=r312;
        r67.left=r131;
        r67.right=r414;
        r312.left=r8;
        r414.right=r39;   
 
        TreeTriplet p = new TreeTriplet();
        p.preorder(null, null, r10,100);
        System.out.println(count);
}
     
     
}
 // This code is contributed by Akshay Siddhpura


Python3




# Python3 program to implement
# the above approach
class Node:
     
    def __init__(self,
                 data):
         
        self.left = None
        self.right = None
        self.data = data       
 
# global variable
count = 0
     
def preorder(grandParent, parent,
             child, sum):
     
    global count
         
    if(grandParent != None and
       parent != None and
       child != None and
       (grandParent.data +
        parent.data +
        child.data) > sum):    
        count += 1
             
        # uncomment below lines if
        # you want to print triplets 
        # System.out.print(grandParent.
        # data+"-->"+parent.data+"-->
        # "+child.data); System.out.println();          
    if(child == None):
        return;
           
    preorder(parent, child,
             child.left, sum);
    preorder(parent, child,
             child.right, sum); 
     
# Driver code
if __name__ == "__main__":
     
    r10 = Node(10);
    r1 = Node(1);
    r22 = Node(22);
    r35 = Node(35);
    r4 = Node(4);
    r15 = Node(15);
    r67 = Node(67);
    r57 = Node(57);
    r38 = Node(38);
    r9 = Node(9);
    r10_2 = Node(10);
    r110 = Node(110);
    r312 = Node(312);
    r131 = Node(131);
    r414 = Node(414);
    r8 = Node(8);
    r39 = Node(39);
           
    r10.left = r1;
    r10.right = r22;
    r1.left = r35;
    r1.right = r4;
    r22.left = r15;
    r22.right = r67;
    r35.left = r57;
    r35.right = r38;
    r4.left = r9;
    r4.right = r10_2;
    r15.left = r110;
    r15.right = r312;
    r67.left = r131;
    r67.right = r414;
    r312.left = r8;
    r414.right = r39;    
   
    preorder(None, None,
             r10, 100)
    print(count);
         
# This code is contributed by Rutvik_56


C#




// C# program to find an index which has
// same number of even elements on left and
// right, Or same number of odd elements on
// left and right.
using System;
     
public class Node
{
    public int data;
    public Node left;
    public Node right;
    public Node(int data)
    {
        this.data = data;
    }
}
 
class GFG
{
    static int count = 0; // global variable
    public void preorder(Node grandParent,
                         Node parent,
                         Node child, int sum)
    {
        if(grandParent != null && parent != null &&
                 child != null && (grandParent.data +
                     parent.data + child.data) > sum)
        {
            count++;
             
            // uncomment below lines if you want to print triplets
            /*System.out.print(grandParent.data+"-->"+parent.data+"-->"+child.data);
            System.out.println();*/       
        }
        if(child == null)
            return;    
        preorder(parent,child,child.left,sum);
        preorder(parent,child,child.right,sum);    
    }
     
    // Driver Code
    public static void Main(String []args)
    {    
        Node r10 = new Node(10);
        Node r1 = new Node(1);
        Node r22 = new Node(22);
        Node r35 = new Node(35);
        Node r4 = new Node(4);
        Node r15 = new Node(15);
        Node r67 = new Node(67);
        Node r57 = new Node(57);
        Node r38 = new Node(38);
        Node r9 = new Node(9);
        Node r10_2 = new Node(10);
        Node r110 = new Node(110);
        Node r312 = new Node(312);
        Node r131 = new Node(131);
        Node r414 = new Node(414);
        Node r8 = new Node(8);
        Node r39 = new Node(39);
         
        r10.left = r1;
        r10.right = r22;
        r1.left = r35;
        r1.right = r4;
        r22.left = r15;
        r22.right = r67;
        r35.left = r57;
        r35.right = r38;
        r4.left = r9;
        r4.right = r10_2;
        r15.left = r110;
        r15.right = r312;
        r67.left = r131;
        r67.right = r414;
        r312.left = r8;
        r414.right = r39;
 
        GFG p = new GFG();
        p.preorder(null, null, r10,100);
        Console.WriteLine(count);
}
}
 
// This code is contributed by 29AjayKumar


Javascript




<script>
 
class Node
{
    constructor(data)
    {
        this.data = data;
        this.left = this.right = null;
    }
}
 
let count = 0; // global variable
 
function preorder(grandParent, parent, child, sum)
{
    if(grandParent != null && parent != null && child != null && (grandParent.data+parent.data+child.data) > sum)
        {
            count++;
            // uncomment below lines if you want to print triplets
            /* System.out.print(grandParent.data+"-->"+parent.data+"-->"+child.data);
            System.out.println();*/          
        }
        if(child == null)
          return;      
        preorder(parent, child, child.left, sum);
        preorder(parent, child, child.right, sum); 
}
 
let r10 = new Node(10);
let r1 = new Node(1);
let r22 = new Node(22);
let r35 = new Node(35);
let r4 = new Node(4);
let r15 = new Node(15);
let r67 = new Node(67);
let r57 = new Node(57);
let r38 = new Node(38);
let r9 = new Node(9);
let r10_2 = new Node(10);
let r110 = new Node(110);
let r312 = new Node(312);
let r131 = new Node(131);
let r414 = new Node(414);
let r8 = new Node(8);
let r39 = new Node(39);
 
r10.left = r1;
r10.right = r22;
r1.left = r35;
r1.right = r4;
r22.left = r15;
r22.right = r67;
r35.left = r57;
r35.right = r38;
r4.left = r9;
r4.right = r10_2;
r15.left = r110;
r15.right = r312;
r67.left = r131;
r67.right = r414;
r312.left = r8;
r414.right = r39;  
 
preorder(null, null, r10,100);
document.write(count);
 
// This code is contributed by unknown2108
</script>


Output:

6

 

Time complexity: O(n) 

Auxiliary Space : The space complexity of the above code is O(1), as it does not use any additional data structures and only uses a few variables for storing intermediate values. (the recursion stack is not being considered for this approach).

Feeling lost in the world of random DSA topics, wasting time without progress? It’s time for a change! Join our DSA course, where we’ll guide you on an exciting journey to master DSA efficiently and on schedule.
Ready to dive in? Explore our Free Demo Content and join our DSA course, trusted by over 100,000 neveropen!

RELATED ARTICLES

Most Popular

Recent Comments