Sunday, November 17, 2024
Google search engine
HomeData Modelling & AICount Sexy Prime Pairs in the given array

Count Sexy Prime Pairs in the given array

Given an array arr[] of size N containing natural numbers, the task is to count all possible pairs in the arr[] that are Sexy Prime Pairs.
 

A SPP (Sexy Prime Pair) are those numbers that are prime and having a difference 6 between the prime numbers. In other words, an SPP (Sexy Prime Pair) is a prime that has a prime gap of six.

Examples: 
 

Input: arr[] = { 6, 7, 5, 11, 13 } 
Output:
Explanation: 
The 2 pairs are (5, 11) and (7, 13).
Input: arr[] = { 2, 4, 6, 11 } 
Output:
Explanation: 
There are no such pairs forming SPP (Sexy Prime Pair). 
 

 

Naive Approach: To solve the problem mentioned above the idea is to find all possible pairs in the given array arr[] and check whether both the element in pairs are Prime Numbers and they differ by 6, then the current pairs form SPP (Sexy Prime Pair).
Below is the implementation of the above approach:
 

C++




// C++ program to count Sexy
// Prime pairs in array
 
#include <bits/stdc++.h>
using namespace std;
 
// A utility function to check if
// the number n is prime or not
bool isPrime(int n)
{
    // Base Cases
    if (n <= 1)
        return false;
    if (n <= 3)
        return true;
 
    // Check to skip middle five
    // numbers in below loop
    if (n % 2 == 0 || n % 3 == 0)
        return false;
 
    for (int i = 5; i * i <= n; i += 6) {
 
        // If n is divisible by i and i+2
        // then it is not prime
        if (n % i == 0
            || n % (i + 6) == 0) {
            return false;
        }
    }
 
    return true;
}
 
// A utility function that check
// if n1 and n2 are SPP (Sexy Prime Pair)
// or not
bool SexyPrime(int n1, int n2)
{
    return (isPrime(n1)
            && isPrime(n2)
            && abs(n1 - n2) == 6);
}
 
// Function to find SPP (Sexy Prime Pair)
// pairs from the given array
int countSexyPairs(int arr[], int n)
{
    int count = 0;
 
    // Iterate through all pairs
    for (int i = 0; i < n; i++) {
        for (int j = i + 1; j < n; j++) {
 
            // Increment count if
            // SPP (Sexy Prime Pair) pair
            if (SexyPrime(arr[i], arr[j])) {
                count++;
            }
        }
    }
 
    return count;
}
 
// Driver code
int main()
{
    int arr[] = { 6, 7, 5, 11, 13 };
    int n = sizeof(arr) / sizeof(arr[0]);
 
    // Function call to find
    // SPP (Sexy Prime Pair) pair
    cout << countSexyPairs(arr, n);
    return 0;
}


Java




// Java program to count Sexy
// Prime pairs in array
import java.util.*;
 
class GFG {
 
    // A utility function to check if
    // the number n is prime or not
    static boolean isPrime(int n)
    {
        // Base Cases
        if (n <= 1)
            return false;
        if (n <= 3)
            return true;
 
        // Check to skip middle five
        // numbers in below loop
        if (n % 2 == 0 || n % 3 == 0)
            return false;
 
        for (int i = 5; i * i <= n; i += 6) {
 
            // If n is divisible by i and i+2
            // then it is not prime
            if (n % i == 0 || n % (i + 6) == 0) {
                return false;
            }
        }
 
        return true;
    }
 
    // A utility function that check
    // if n1 and n2 are SPP (Sexy Prime Pair)
    // or not
    static boolean SexyPrime(int n1, int n2)
    {
        return (isPrime(n1)
                && isPrime(n2)
                && Math.abs(n1 - n2) == 6);
    }
 
    // Function to find SPP (Sexy Prime Pair)
    // pairs from the given array
    static int countSexyPairs(int arr[], int n)
    {
        int count = 0;
 
        // Iterate through all pairs
        for (int i = 0; i < n; i++) {
            for (int j = i + 1; j < n; j++) {
 
                // Increment count if
                // SPP (Sexy Prime Pair) pair
                if (SexyPrime(arr[i], arr[j])) {
                    count++;
                }
            }
        }
 
        return count;
    }
 
    // Driver code
    public static void main(String[] args)
    {
        int arr[] = { 6, 7, 5, 11, 13 };
        int n = arr.length;
 
        // Function call to find
        // SPP (Sexy Prime Pair) pair
        System.out.print(
            countSexyPairs(arr, n));
    }
}


Python 3




# Python 3 program to count Sexy
# Prime pairs in array
from math import sqrt
 
# A utility function to check if
# the number n is prime or not
def isPrime(n):
     
    # Base Cases
    if (n <= 1):
        return False
    if (n <= 3):
        return True
 
    # Check to skip middle five
    # numbers in below loop
    if (n % 2 == 0 or n % 3 == 0):
        return False
 
    for i in range(5, int(sqrt(n))+1, 6):
         
        # If n is divisible by i and i + 2
        # then it is not prime
        if (n % i == 0 or n % (i + 6) == 0):
            return False
 
    return True
 
# A utility function that check
# if n1 and n2 are SPP (Sexy Prime Pair)
# or not
def SexyPrime(n1, n2):
    return (isPrime(n1)
           and isPrime(n2)
           and abs(n1 - n2) == 6)
 
# Function to find SPP (Sexy Prime Pair)
# pairs from the given array
def countSexyPairs(arr, n):
    count = 0
 
    # Iterate through all pairs
    for i in range(n):
        for j in range(i + 1, n):
             
            # Increment count if
            # SPP (Sexy Prime Pair) pair
            if (SexyPrime(arr[i], arr[j])):
                count += 1
 
    return count
 
# Driver code
if __name__ == '__main__':
    arr = [6, 7, 5, 11, 13]
    n = len(arr)
 
    # Function call to find
    # SPP (Sexy Prime Pair) pair
    print(countSexyPairs(arr, n))


C#




// C# program to count Sexy
// Prime pairs in array
using System;
 
class GFG {
 
    // A utility function to check if
    // the number n is prime or not
    static bool isPrime(int n)
    {
        // Base Cases
        if (n <= 1)
            return false;
        if (n <= 3)
            return true;
 
        // Check to skip middle five
        // numbers in below loop
        if (n % 2 == 0 || n % 3 == 0)
            return false;
 
        for (int i = 5; i * i <= n; i += 6) {
 
            // If n is divisible by i and i+2
            // then it is not prime
            if (n % i == 0
                || n % (i + 6) == 0) {
                return false;
            }
        }
 
        return true;
    }
 
    // A utility function that check
    // if n1 and n2 are SPP (Sexy Prime Pair)
    // or not
    static bool SexyPrime(int n1, int n2)
    {
        return (isPrime(n1)
                && isPrime(n2)
                && Math.Abs(n1 - n2) == 6);
    }
 
    // Function to find SPP (Sexy Prime Pair)
    // pairs from the given array
    static int countSexyPairs(int[] arr, int n)
    {
        int count = 0;
 
        // Iterate through all pairs
        for (int i = 0; i < n; i++) {
            for (int j = i + 1; j < n; j++) {
 
                // Increment count if
                // SPP (Sexy Prime Pair) pair
                if (SexyPrime(arr[i], arr[j])) {
                    count++;
                }
            }
        }
 
        return count;
    }
 
    // Driver code
    public static void Main(String[] args)
    {
        int[] arr = { 6, 7, 5, 11, 13 };
        int n = arr.Length;
 
        // Function call to find
        // SPP (Sexy Prime Pair) pair
        Console.Write(countSexyPairs(arr, n));
    }
}


Javascript




<script>
 
// javascript program to count Sexy
// Prime pairs in array
 
 
    // A utility function to check if
    // the number n is prime or not
     
    function isPrime( n)
    {
        // Base Cases
        if (n <= 1)
            return false;
        if (n <= 3)
            return true;
 
        // Check to skip middle five
        // numbers in below loop
         
        if (n % 2 == 0 || n % 3 == 0)
            return false;
 
        for (var i = 5; i * i <= n; i += 6) {
 
            // If n is divisible by i and i+2
            // then it is not prime
            if (n % i == 0
                || n % (i + 6) == 0) {
                return false;
            }
        }
 
        return true;
    }
 
    // A utility function that check
    // if n1 and n2 are SPP (Sexy Prime Pair)
    // or not
     
    function SexyPrime( n1,  n2)
    {
        return (isPrime(n1)
                && isPrime(n2)
                && Math.abs(n1 - n2) == 6);
    }
 
    // Function to find SPP (Sexy Prime Pair)
    // pairs from the given array
    function countSexyPairs( arr,  n)
    {
        var count = 0;
 
        // Iterate through all pairs
        for (var i = 0; i < n; i++) {
            for (var j = i + 1; j < n; j++) {
 
                // Increment count if
                // SPP (Sexy Prime Pair) pair
                if (SexyPrime(arr[i], arr[j])) {
                    count++;
                }
            }
        }
 
        return count;
    }
 
    // Driver code
 
        var arr = [ 6, 7, 5, 11, 13 ]
        var n = arr.length;
 
        // Function call to find
        // SPP (Sexy Prime Pair) pair
        document.write(countSexyPairs(arr, n));
         
</script>


Output: 

2

 

Time Complexity: O(sqrt(M) * N2), where N is the number of elements in the given array and M is the maximum element in the array.
Efficient Approach:
The method mentioned above can be optimized by the following steps: 
 

  1. Precompute all the Prime Numbers till maximum number in the given array arr[] using Sieve of Eratosthenes.
  2. Store all the frequency of all element for the given array and sort the array.
  3. For each element in the array, check if the element is prime or not.
  4. If the element is prime, then check if (element + 6) is a prime number or not and is present in the given array.
  5. If the (element + 6) is present, then the frequency of (element + 6) will give the count of pairs for the current element.
  6. Repeat the above step for all the element in the array.

Below is the implementation of the above approach:
 

C++




// C++ program to count Sexy
// Prime pairs in array
 
#include <bits/stdc++.h>
using namespace std;
 
// To store check the prime
// number
vector<bool> Prime;
 
// A utility function that find
// the Prime Numbers till N
void computePrime(int N)
{
 
    // Resize the Prime Number
    Prime.resize(N + 1, true);
    Prime[0] = Prime[1] = false;
 
    // Loop till sqrt(N) to find
    // prime numbers and make their
    // multiple false in the bool
    // array Prime
    for (int i = 2; i * i <= N; i++) {
        if (Prime[i]) {
            for (int j = i * i; j < N; j += i) {
                Prime[j] = false;
            }
        }
    }
}
 
// Function that returns the count
// of SPP (Sexy Prime Pair) Pairs
int countSexyPairs(int arr[], int n)
{
 
    // Find the maximum element in
    // the given array arr[]
    int maxE = *max_element(arr, arr + n);
 
    // Function to calculate the
    // prime numbers till N
    computePrime(maxE);
 
    // To store the count of pairs
    int count = 0;
 
    // To store the frequency of
    // element in the array arr[]
    int freq[maxE + 1] = { 0 };
 
    for (int i = 0; i < n; i++) {
        freq[arr[i]]++;
    }
 
    // Sort before traversing the array
    sort(arr, arr + n);
 
    // Traverse the array and find
    // the pairs with SPP (Sexy Prime Pair)
    for (int i = 0; i < n; i++) {
 
        // If current element is
        // Prime, then check for
        // (current element + 6)
        if (Prime[arr[i]]) {
            if (freq[arr[i] + 6] > 0
                && Prime[arr[i] + 6]) {
                count++;
            }
        }
    }
 
    // Return the count of pairs
    return count;
}
 
// Driver code
int main()
{
    int arr[] = { 6, 7, 5, 11, 13 };
    int n = sizeof(arr) / sizeof(arr[0]);
 
    // Function call to find
    // SPP (Sexy Prime Pair) pair
    cout << countSexyPairs(arr, n);
    return 0;
}


Java




// Java program to count Sexy
// Prime pairs in array
 
import java.util.*;
 
class GFG {
 
    // To store check the prime
    // number
    static boolean[] Prime;
 
    // A utility function that find
    // the Prime Numbers till N
    static void computePrime(int N)
    {
 
        // Resize the Prime Number
        Prime = new boolean[N + 1];
        Arrays.fill(Prime, true);
        Prime[0] = Prime[1] = false;
 
        // Loop till Math.sqrt(N) to find
        // prime numbers and make their
        // multiple false in the bool
        // array Prime
        for (int i = 2; i * i <= N; i++) {
            if (Prime[i]) {
                for (int j = i * i; j < N; j += i) {
                    Prime[j] = false;
                }
            }
        }
    }
 
    // Function that returns the count
    // of SPP (Sexy Prime Pair) Pairs
    static int countSexyPairs(int arr[], int n)
    {
 
        // Find the maximum element in
        // the given array arr[]
        int maxE = Arrays.stream(arr)
                       .max()
                       .getAsInt();
 
        // Function to calculate the
        // prime numbers till N
        computePrime(maxE);
 
        // To store the count of pairs
        int count = 0;
 
        // To store the frequency of
        // element in the array arr[]
        int freq[] = new int[maxE + 1];
 
        for (int i = 0; i < n; i++) {
            freq[arr[i]]++;
        }
 
        // Sort before traversing the array
        Arrays.sort(arr);
 
        // Traverse the array and find
        // the pairs with SPP (Sexy Prime Pair)
        for (int i = 0; i < n; i++) {
 
            // If current element is
            // Prime, then check for
            // (current element + 6)
            if (Prime[arr[i]]) {
                if (arr[i] + 6 < freq.length
                    && freq[arr[i] + 6] > 0
                    && Prime[arr[i] + 6]) {
                    count++;
                }
            }
        }
 
        // Return the count of pairs
        return count;
    }
 
    // Driver code
    public static void main(String[] args)
    {
        int arr[] = { 6, 7, 5, 11, 13 };
        int n = arr.length;
 
        // Function call to find
        // SPP (Sexy Prime Pair) pair
        System.out.print(
            countSexyPairs(arr, n));
    }
}


Python3




# Python 3 program to count Sexy
# Prime pairs in array
 
# A utility function that find
# the Prime Numbers till N
def computePrime( N):
 
    # Resize the Prime Number
    Prime = [True]*(N + 1)
    Prime[0] = False
    Prime[1] = False
 
    # Loop till sqrt(N) to find
    # prime numbers and make their
    # multiple false in the bool
    # array Prime
    i = 2
    while i * i <= N:
        if (Prime[i]):
            for j in range( i * i, N, i):
                Prime[j] = False
        i += 1
 
    return Prime
 
# Function that returns the count
# of SPP (Sexy Prime Pair) Pairs
def countSexyPairs(arr, n):
 
    # Find the maximum element in
    # the given array arr[]
    maxE = max(arr)
 
    # Function to calculate the
    # prime numbers till N
    Prime = computePrime(maxE)
 
    # To store the count of pairs
    count = 0
 
    # To store the frequency of
    # element in the array arr[]
    freq = [0]*(maxE + 6)
 
    for i in range( n):
        freq[arr[i]] += 1
 
    # Sort before traversing the array
    arr.sort()
 
    # Traverse the array and find
    # the pairs with SPP (Sexy Prime Pair)s
    for i in range(n):
 
        # If current element is
        # Prime, then check for
        # (current element + 6)
        if (Prime[arr[i]]):
            if ((arr[i] + 6) <= (maxE)
                and freq[arr[i] + 6] > 0
                and Prime[arr[i] + 6]):
                count += 1
 
    # Return the count of pairs
    return count
 
# Driver code
if __name__ == "__main__":
     
    arr = [ 6, 7, 5, 11, 13 ]
    n = len(arr)
 
    # Function call to find
    # SPP (Sexy Prime Pair)s pair
    print( countSexyPairs(arr, n))
    


C#




// C# program to count Sexy
// Prime pairs in array
 
using System;
using System.Linq;
 
class GFG {
 
    // To store check the prime
    // number
    static bool[] Prime;
 
    // A utility function that find
    // the Prime Numbers till N
    static void computePrime(int N)
    {
 
        // Resize the Prime Number
        Prime = new bool[N + 1];
        for (int i = 0; i <= N; i++) {
            Prime[i] = true;
        }
 
        Prime[0] = Prime[1] = false;
 
        // Loop till Math.Sqrt(N) to find
        // prime numbers and make their
        // multiple false in the bool
        // array Prime
        for (int i = 2; i * i <= N; i++) {
            if (Prime[i]) {
                for (int j = i * i; j < N; j += i) {
                    Prime[j] = false;
                }
            }
        }
    }
 
    // Function that returns the count
    // of SPP (Sexy Prime Pair) Pairs
    static int countSexyPairs(int[] arr, int n)
    {
 
        // Find the maximum element in
        // the given array []arr
        int maxE = arr.Max();
 
        // Function to calculate the
        // prime numbers till N
        computePrime(maxE);
 
        // To store the count of pairs
        int count = 0;
 
        // To store the frequency of
        // element in the array []arr
        int[] freq = new int[maxE + 1];
 
        for (int i = 0; i < n; i++) {
            freq[arr[i]]++;
        }
 
        // Sort before traversing the array
        Array.Sort(arr);
 
        // Traverse the array and find
        // the pairs with SPP (Sexy Prime Pair)s
        for (int i = 0; i < n; i++) {
 
            // If current element is
            // Prime, then check for
            // (current element + 6)
            if (Prime[arr[i]]) {
                if (arr[i] + 6 < freq.Length
                    && freq[arr[i] + 6] > 0
                    && Prime[arr[i] + 6]) {
                    count++;
                }
            }
        }
 
        // Return the count of pairs
        return count;
    }
 
    // Driver code
    public static void Main(String[] args)
    {
        int[] arr = { 6, 7, 5, 11, 13 };
        int n = arr.Length;
 
        // Function call to find
        // SPP (Sexy Prime Pair)s pair
        Console.Write(countSexyPairs(arr, n));
    }
}


Javascript




<script>
 
// javascript program to count Sexy
// Prime pairs in array
 
// To store check the prime
// number
var Prime = Array(100).fill(true);
 
// A utility function that find
// the Prime Numbers till N
function computePrime(N)
{
       
     var i,j;
    // Resize the Prime Number]
    Prime[0] = Prime[1] = false;
 
    // Loop till sqrt(N) to find
    // prime numbers and make their
    // multiple false in the bool
    // array Prime
    for (i = 2; i * i <= N; i++) {
        if (Prime[i]) {
            for (j = i * i; j < N; j += i) {
                Prime[j] = false;
            }
        }
    }
}
 
// Function that returns the count
// of SPP (Sexy Prime Pair) Pairs
function countSexyPairs(arr, n)
{
 
    // Find the maximum element in
    // the given array arr[]
    var maxE = Math.max.apply(Math, arr);
 
    // Function to calculate the
    // prime numbers till N
    computePrime(maxE);
 
    // To store the count of pairs
    var count = 0;
 
    // To store the frequency of
    // element in the array arr[]
    var freq = Array(maxE + 1).fill(0);
 
    for (i = 0; i < n; i++) {
        freq[arr[i]]++;
    }
 
    // Sort before traversing the array
    arr.sort();
 
    // Traverse the array and find
    // the pairs with SPP (Sexy Prime Pair)
    for (i = 0; i < n; i++) {
 
        // If current element is
        // Prime, then check for
        // (current element + 6)
        if (Prime[arr[i]]) {
            if (freq[arr[i] + 6] > 0
                && Prime[arr[i] + 6]) {
                count++;
            }
        }
    }
 
    // Return the count of pairs
    return count;
}
 
// Driver code
    var arr = [6, 7, 5, 11, 13];
    var n = arr.length;
 
    // Function call to find
    // SPP (Sexy Prime Pair) pair
    document.write(countSexyPairs(arr, n));
 
// This code is contributed by ipg2016107.
</script>


Output: 

2

 

Time Complexity: O(N * sqrt(M)), where N is the number of elements in the given array, and M is the maximum element in the array.
Auxiliary Space Complexity: O(N)
 

Feeling lost in the world of random DSA topics, wasting time without progress? It’s time for a change! Join our DSA course, where we’ll guide you on an exciting journey to master DSA efficiently and on schedule.
Ready to dive in? Explore our Free Demo Content and join our DSA course, trusted by over 100,000 neveropen!

Dominic Rubhabha-Wardslaus
Dominic Rubhabha-Wardslaushttp://wardslaus.com
infosec,malicious & dos attacks generator, boot rom exploit philanthropist , wild hacker , game developer,
RELATED ARTICLES

Most Popular

Recent Comments