Sunday, November 17, 2024
Google search engine
HomeData Modelling & AIMinimum adjacent swaps to group similar characters together

Minimum adjacent swaps to group similar characters together

Given a string S of length N, consisting of only lowercase English characters, the task is to find the minimum number of adjacent swaps required to group the same characters together.

Examples:

Input: S = “cbabc”
Output: 4
Explanation:
Swap characters S[0] to S[1]. Therefore, S = “bcabc”.
Swap characters S[1] to S[2]. Therefore, S = “bacbc”.
Swap characters S[2] to S[3]. Therefore, S = “babcc”.
Swap characters S[1] to S[2]. Therefore, S = “bbacc”.
Hence, the total swaps required is 4.

Input: S = “abcd”
Output: 0
Explanation:
All characters are distinct. Hence, no swapping is required.

Approach: The idea is to store the indices of each character. Then, for each character, find the adjacent absolute differences and add them to the answer. Follow the steps below to solve the problem:

  1. Initialize a 2D vector arr[], where vector arr[i] will store the indices of character (i + ‘a’) and a variable answer initialized to 0.
  2. Iterate the given string over the range [0, N – 1].
  3. Add index i to arr[S[i] – ‘a’].
  4. After traversing the string, traverse the 2D vector arr[] from i = ‘a’ to ‘z’.
  5. For each character i, find the absolute adjacent differences of the indices of character i present in that vector and add them to the answer.
  6. After traversing the 2D vector, print the answer as the minimum number of swaps.

Below is the implementation of the above approach:

C++




// C++ program for the above approach
 
#include <bits/stdc++.h>
using namespace std;
 
// Function to find minimum adjacent
// swaps required to make all the
// same character adjacent
int minSwaps(string S, int n)
{
    // Initialize answer
    int swaps = 0;
 
    // Create a 2D array of size 26
    vector<vector<int> > arr(26);
 
    // Traverse the string
    for (int i = 0; i < n; i++) {
 
        // Get character
        int pos = S[i] - 'a';
 
        // Append the current index in
        // the corresponding vector
        arr[pos].push_back(i);
    }
 
    // Traverse each character from a to z
    for (char ch = 'a'; ch <= 'z'; ++ch) {
        int pos = ch - 'a';
 
        // Add difference of adjacent index
        for (int i = 1;
             i < arr[pos].size(); ++i) {
 
            swaps += abs(arr[pos][i]
                         - arr[pos][i - 1] - 1);
        }
    }
 
    // Return answer
    return swaps;
}
 
// Driver Code
int main()
{
    // Given string
    string S = "abbccabbcc";
 
    // Size of string
    int N = S.length();
 
    // Function Call
    cout << minSwaps(S, N);
 
    return 0;
}


Java




// Java program for the above approach
import java.util.*;
 
class GFG{
 
// Function to find minimum adjacent
// swaps required to make all the
// same character adjacent
static int minSwaps(String S, int n)
{
     
    // Initialize answer
    int swaps = 0;
 
    // Create a 2D array of size 26
    @SuppressWarnings("unchecked")
    Vector<Integer> []arr = new Vector[26];
    for(int i = 0; i < arr.length; i++)
        arr[i] = new Vector<Integer>();
         
    // Traverse the String
    for(int i = 0; i < n; i++)
    {
         
        // Get character
        int pos = S.charAt(i) - 'a';
 
        // Append the current index in
        // the corresponding vector
        arr[pos].add(i);
    }
 
    // Traverse each character from a to z
    for(char ch = 'a'; ch <= 'z'; ++ch)
    {
        int pos = ch - 'a';
 
        // Add difference of adjacent index
        for(int i = 1; i < arr[pos].size(); ++i)
        {
            swaps += Math.abs(arr[pos].get(i) -
                              arr[pos].get(i - 1) - 1);
        }
    }
 
    // Return answer
    return swaps;
}
 
// Driver Code
public static void main(String[] args)
{
     
    // Given String
    String S = "abbccabbcc";
 
    // Size of String
    int N = S.length();
 
    // Function Call
    System.out.print(minSwaps(S, N));
}
}
 
// This code is contributed by Amit Katiyar


Python3




# Python3 program for the above approach
 
# Function to find minimum adjacent
# swaps required to make all the
# same character adjacent
def minSwaps(S, n):
     
    # Initialize answer
    swaps = 0
 
    # Create a 2D array of size 26
    arr = [[] for i in range(26)]
 
    # Traverse the string
    for i in range(n):
         
        # Get character
        pos = ord(S[i]) - ord('a')
 
        # Append the current index in
        # the corresponding vector
        arr[pos].append(i)
 
    # Traverse each character from a to z
    for ch in range(ord('a'), ord('z') + 1):
        pos = ch - ord('a')
 
        # Add difference of adjacent index
        for i in range(1, len(arr[pos])):
            swaps += abs(arr[pos][i] -
                         arr[pos][i - 1] - 1)
 
    # Return answer
    return swaps
 
# Driver Code
if __name__ == '__main__':
     
    # Given string
    S = "abbccabbcc"
 
    # Size of string
    N = len(S)
 
    # Function Call
    print(minSwaps(S, N))
 
# This code is contributed by mohit kumar 29


C#




// C# program for the
// above approach
using System;
using System.Collections.Generic;
class GFG{
 
// Function to find minimum
// adjacent swaps required
// to make all the same
// character adjacent
static int minSwaps(String S,
                    int n)
{   
  // Initialize answer
  int swaps = 0;
 
  // Create a 2D array
  // of size 26
  List<int> []arr =
       new List<int>[26];
   
  for(int i = 0;
          i < arr.Length; i++)
    arr[i] = new List<int>();
 
  // Traverse the String
  for(int i = 0; i < n; i++)
  {
    // Get character
    int pos = S[i] - 'a';
 
    // Append the current index in
    // the corresponding vector
    arr[pos].Add(i);
  }
 
  // Traverse each character
  // from a to z
  for(char ch = 'a';
           ch <= 'z'; ++ch)
  {
    int pos = ch - 'a';
 
    // Add difference of
    // adjacent index
    for(int i = 1;
            i < arr[pos].Count; ++i)
    {
      swaps += Math.Abs(arr[pos][i] -
                        arr[pos][i - 1] - 1);
    }
  }
 
  // Return answer
  return swaps;
}
 
// Driver Code
public static void Main(String[] args)
{   
  // Given String
  String S = "abbccabbcc";
 
  // Size of String
  int N = S.Length;
 
  // Function Call
  Console.Write(minSwaps(S, N));
}
}
 
// This code is contributed by gauravrajput1


Javascript




<script>
// Javascript program for the above approach
 
// Function to find minimum adjacent
// swaps required to make all the
// same character adjacent
function minSwaps(S,n)
{
    // Initialize answer
    let swaps = 0;
  
    // Create a 2D array of size 26   
    let arr = new Array(26);
    for(let i = 0; i < arr.length; i++)
        arr[i] = [];
          
    // Traverse the String
    for(let i = 0; i < n; i++)
    {
          
        // Get character
        let pos = S[i].charCodeAt(0) - 'a'.charCodeAt(0);
  
        // Append the current index in
        // the corresponding vector
        arr[pos].push(i);
    }
  
    // Traverse each character from a to z
    for(let ch = 'a'.charCodeAt(0); ch <= 'z'.charCodeAt(0); ++ch)
    {
        let pos = ch - 'a'.charCodeAt(0);
  
        // Add difference of adjacent index
        for(let i = 1; i < arr[pos].length; ++i)
        {
            swaps += Math.abs(arr[pos][i] -
                              arr[pos][i-1] - 1);
        }
    }
  
    // Return answer
    return swaps;
}
 
// Driver Code
 
// Given String
let S = "abbccabbcc";
 
// Size of String
let N = S.length;
 
// Function Call
document.write(minSwaps(S, N));
 
// This code is contributed by patel2127
</script>


Output

10

Time Complexity: O(26*N)
Auxiliary Space: O(N)

Feeling lost in the world of random DSA topics, wasting time without progress? It’s time for a change! Join our DSA course, where we’ll guide you on an exciting journey to master DSA efficiently and on schedule.
Ready to dive in? Explore our Free Demo Content and join our DSA course, trusted by over 100,000 neveropen!

RELATED ARTICLES

Most Popular

Recent Comments