Saturday, November 16, 2024
Google search engine
HomeData Modelling & AIPrint triplets with sum less than k

Print triplets with sum less than k

Given an array of distinct integers and a sum value. Print all triplets with sum smaller than given sum value. Expected Time Complexity is O(n2).

Examples

Input : arr[] = {-2, 0, 1, 3}
        sum = 2.
Output : (-2, 0, 1)
         (-2, 0, 3) 
Explanation :  The two triplets have sum less than 2.

Input : arr[] = {5, 1, 3, 4, 7}
        sum = 12.
Output : (1, 3, 4)
         (1, 3, 5)
         (1, 3, 7) 
         (1, 4, 5)
               

A Simple Solution is to run three loops to consider all triplets one by one. For every triplet, compare the sums and print current triplet if its sum is smaller than given sum. 

Implementation:

C++




// A Simple C++ program to count triplets with sum
// smaller than a given value
#include<bits/stdc++.h>
using namespace std;
 
int printTriplets(int arr[], int n, int sum)
{
    // Fix the first element as A[i]
    for (int i = 0; i < n-2; i++)
    {
       // Fix the second element as A[j]
       for (int j = i+1; j < n-1; j++)
       {
           // Now look for the third number
           for (int k = j+1; k < n; k++)
               if (arr[i] + arr[j] + arr[k] < sum)
                  cout << arr[i] << ", " << arr[j]
                       << ", " << arr[k] << endl;
       }
    }
}
 
// Driver program
int main()
{
    int arr[] = {5, 1, 3, 4, 7};
    int n = sizeof arr / sizeof arr[0];
    int sum = 12;
    printTriplets(arr, n, sum);
    return 0;
}


Java




// A Simple Java program to
// count triplets with sum
// smaller than a given value
import java.io.*;
 
class GFG
{
static int printTriplets(int arr[],
                         int n, int sum)
{
    // Fix the first
    // element as A[i]
    for (int i = 0; i < n - 2; i++)
    {
         
    // Fix the second
    // element as A[j]
    for (int j = i + 1;
             j < n - 1; j++)
    {
        // Now look for
        // the third number
        for (int k = j + 1; k < n; k++)
            if (arr[i] + arr[j] + arr[k] < sum)
                System.out.println(arr[i] + ", " +
                                   arr[j] + ", " +
                                   arr[k]);
    }
    }
    return 0;
}
 
// Driver Code
public static void main (String[] args)
{
    int arr[] = {5, 1, 3, 4, 7};
    int n = arr.length;
    int sum = 12;
    printTriplets(arr, n, sum);
}
}
 
// This code is contributed
// by anuj_67.


Python3




# A Simple python 3 program to count
# triplets with sum smaller than a
# given value
 
def printTriplets(arr, n, sum):
     
    # Fix the first element as A[i]
    for i in range(0, n - 2, 1):
         
        # Fix the second element as A[j]
        for j in range(i + 1, n - 1, 1):
             
            # Now look for the third number
            for k in range(j + 1, n, 1):
                if (arr[i] + arr[j] + arr[k] < sum):
                    print(arr[i], ",", arr[j], ",", arr[k])
# Driver Code
if __name__ == '__main__':
    arr =[5, 1, 3, 4, 7]
    n = len(arr)
    sum = 12
    printTriplets(arr, n, sum)
     
# This code is contributed by
# Sahil_Shelangia


C#




// A Simple C# program to
// count triplets with sum
// smaller than a given value
using System;
class GFG
{
static int printTriplets(int[] arr,
                        int n, int sum)
{
    // Fix the first
    // element as A[i]
    for (int i = 0; i < n - 2; i++)
    {
         
    // Fix the second
    // element as A[j]
    for (int j = i + 1;
            j < n - 1; j++)
    {
        // Now look for
        // the third number
        for (int k = j + 1; k < n; k++)
            if (arr[i] + arr[j] + arr[k] < sum)
                Console.WriteLine(arr[i] + ", " +
                                arr[j] + ", " +
                                arr[k]);
    }
    }
    return 0;
}
 
// Driver Code
public static void Main ()
{
    int[] arr = {5, 1, 3, 4, 7};
    int n = arr.Length;
    int sum = 12;
    printTriplets(arr, n, sum);
}
}
 
// This code is contributed
// by Mukul Singh.


PHP




<?php
// A Simple PHP program to count triplets
// with sum smaller than a given value
 
function printTriplets(&$arr, $n, $sum)
{
    // Fix the first element as A[i]
    for ($i = 0; $i < $n - 2; $i++)
    {
    // Fix the second element as A[j]
    for ($j = $i + 1; $j < $n - 1; $j++)
    {
        // Now look for the third number
        for ($k = $j + 1; $k < $n; $k++)
            if ($arr[$i] + $arr[$j] +
                           $arr[$k] < $sum)
            {
                echo($arr[$i]);
                echo(", " );
                echo($arr[$j]);
                echo(", ");
                echo($arr[$k]);
                echo("\n");
            }
    }
    }
}
 
// Driver Code
$arr = array(5, 1, 3, 4, 7);
$n = sizeof($arr);
$sum = 12;
printTriplets($arr, $n, $sum);
 
// This code is contributed
// by Shivi_Aggarwal
?>


Javascript




<script>
 
// A Simple JavaScript program to
// count triplets with sum
// smaller than a given value
 
function printTriplets(arr, n, sum)
{
    // Fix the first element as A[i]
    for (let i = 0; i < n-2; i++)
    {
    // Fix the second element as A[j]
    for (let j = i+1; j < n-1; j++)
    {
        // Now look for the third number
        for (let k = j+1; k < n; k++)
            if (arr[i] + arr[j] + arr[k] < sum)
                document.write(arr[i] + ", " + arr[j]
                    + ", " + arr[k] + "<br>");
    }
    }
}
 
// Driver program
    let arr = [5, 1, 3, 4, 7];
    let n = arr.length;
    let sum = 12;
    printTriplets(arr, n, sum);
 
 
// This code is contributed by Surbhi Tyagi.
 
</script>


Output

5, 1, 3
5, 1, 4
1, 3, 4
1, 3, 7

Time complexity : O(n3)

Auxiliary Space: O(1)

An Efficient Solution can print triplets in O(n2) by sorting the array first, and then using method 1 of this post in a loop.

1) Sort the input array in increasing order.
2) Initialize result as 0.
3) Run a loop from i = 0 to n-2.  An iteration of this loop 
   finds all triplets with arr[i] as first element.
     a) Initialize other two elements as corner elements
        of subarray
        arr[i+1..n-1], i.e., j = i+1 and k = n-1
     b) Move j and k toward each other until they meet,
        i.e., while (j = sum), then do k--

        // Else for current i and j, there are (k-j) possible  
        // third elements that satisfy the constraint.
        (ii) Else print elements from j to k

Below is the implementation of above idea. 

C++




// C++ program to print triplets with sum smaller
// than a given value
#include <bits/stdc++.h>
using namespace std;
 
int printTriplets(int arr[], int n, int sum)
{
    // Sort input array
    sort(arr, arr + n);
 
    // Every iteration of loop counts triplet with
    // first element as arr[i].
    for (int i = 0; i < n - 2; i++) {
 
        // Initialize other two elements as corner
        // elements of subarray arr[j+1..k]
        int j = i + 1, k = n - 1;
 
        // Use Meet in the Middle concept
        while (j < k) {
 
            // If sum of current triplet is more or equal,
            // move right corner to look for smaller values
            if (arr[i] + arr[j] + arr[k] >= sum)
                k--;
 
            // Else move left corner
            else {
 
                // This is important. For current i and j,
                // there are total k-j third elements.
                for (int x = j + 1; x <= k; x++)
                    cout << arr[i] << ", " << arr[j]
                         << ", " << arr[x] << endl;
                j++;
            }
        }
    }
}
 
// Driver program
int main()
{
    int arr[] = { 5, 1, 3, 4, 7 };
    int n = sizeof arr / sizeof arr[0];
    int sum = 12;
    printTriplets(arr, n, sum);
    return 0;
}


Java




// Java program to print
// triplets with sum smaller
// than a given value
import java.util.*;
import java.lang.*;
import java.io.*;
 
class GFG
{
static void printTriplets(int arr[],
                          int n, int sum)
{
    // Sort input array
    Arrays.sort(arr);
 
    // Every iteration of loop
    // counts triplet with
    // first element as arr[i].
    for (int i = 0; i < n - 2; i++)
    {
 
        // Initialize other two elements
        //  as corner elements of subarray
        // arr[j+1..k]
        int j = i + 1, k = n - 1;
 
        // Use Meet in the
        // Middle concept
        while (j < k)
        {
 
            // If sum of current triplet
            // is more or equal, move right
            // corner to look for smaller values
            if (arr[i] + arr[j] + arr[k] >= sum)
                k--;
 
            // Else move left corner
            else
            {
 
                // This is important. For
                // current i and j, there
                // are total k-j third elements.
                for (int x = j + 1; x <= k; x++)
                    System.out.println(arr[i] + ", " +
                                       arr[j] + ", " +
                                       arr[x]);
                j++;
            }
        }
    }
}
 
// Driver Code
public static void main(String args[])
{
    int arr[] = { 5, 1, 3, 4, 7 };
    int n = arr.length;
    int sum = 12;
    printTriplets(arr, n, sum);
}
}
 
// This code is contributed
// by Subhadeep


Python3




# Python3 program to print
# triplets with sum smaller
# than a given value
def printTriplets(arr, n, sum):
     
    # Sort input array
    arr.sort()
  
    # Every iteration of loop
    # counts triplet with
    # first element as arr[i].
    for i in range(n - 2):
 
        # Initialize other two elements
        # as corner elements of subarray
        # arr[j+1..k]
        (j, k) = (i + 1, n - 1)
  
        # Use Meet in the
        # Middle concept
        while (j < k):
         
            # If sum of current triplet
            # is more or equal, move right
            # corner to look for smaller values
            if (arr[i] + arr[j] + arr[k] >= sum):
                k -= 1
  
            # Else move left corner
            else:
  
                # This is important. For
                # current i and j, there
                # are total k-j third elements.
                for x in range(j + 1, k + 1):
                    print(str(arr[i]) + ", " +
                          str(arr[j]) + ", " +
                          str(arr[x]))
        
                j += 1
 
# Driver code
if __name__=="__main__":
     
    arr = [ 5, 1, 3, 4, 7 ]
    n = len(arr)
    sum = 12
     
    printTriplets(arr, n, sum);
 
# This code is contributed by rutvik_56


C#




// C# program to print
// triplets with sum smaller
// than a given value
using System;
 
class GFG
{
static void printTriplets(int[] arr,
                        int n, int sum)
{
    // Sort input array
    Array.Sort(arr);
 
    // Every iteration of loop
    // counts triplet with
    // first element as arr[i].
    for (int i = 0; i < n - 2; i++)
    {
 
        // Initialize other two elements
        // as corner elements of subarray
        // arr[j+1..k]
        int j = i + 1, k = n - 1;
 
        // Use Meet in the
        // Middle concept
        while (j < k)
        {
 
            // If sum of current triplet
            // is more or equal, move right
            // corner to look for smaller values
            if (arr[i] + arr[j] + arr[k] >= sum)
                k--;
 
            // Else move left corner
            else
            {
 
                // This is important. For
                // current i and j, there
                // are total k-j third elements.
                for (int x = j + 1; x <= k; x++)
                    Console.WriteLine(arr[i] + ", " +
                                    arr[j] + ", " +
                                    arr[x]);
                j++;
            }
        }
    }
}
 
// Driver Code
public static void Main()
{
    int[] arr = { 5, 1, 3, 4, 7 };
    int n = arr.Length;
    int sum = 12;
    printTriplets(arr, n, sum);
}
}
 
// This code is contributed
// by Akanksha Rai


PHP




<?php
// PHP program to print triplets with
// sum smaller than a given value
 
function printTriplets($arr, $n, $sum)
{
    // Sort input array
    sort($arr, 0);
 
    // Every iteration of loop counts
    // triplet with first element as arr[i].
    for ($i = 0; $i < $n - 2; $i++)
    {
 
        // Initialize other two elements as corner
        // elements of subarray arr[j+1..k]
        $j = $i + 1; $k = $n - 1;
 
        // Use Meet in the Middle concept
        while ($j < $k)
        {
 
            // If sum of current triplet is more
            // or equal, move right corner to
            // look for smaller values
            if ($arr[$i] + $arr[$j] +
                $arr[$k] >= $sum)
                $k--;
 
            // Else move left corner
            else
            {
 
                // This is important. For current i and j,
                // there are total k-j third elements.
                for ($x = $j + 1; $x <= $k; $x++)
                    echo $arr[$i] . ", " . $arr[$j] .
                              ", " . $arr[$x] . "\n";
                $j++;
            }
        }
    }
}
 
// Driver Code
$arr = array(5, 1, 3, 4, 7);
$n = sizeof($arr);
$sum = 12;
printTriplets($arr, $n, $sum);
 
// This code is contributed
// by Akanksha Rai
?>


Javascript




<script>
 
    // JavaScript program to print
    // triplets with sum smaller
    // than a given value
     
    function printTriplets(arr, n, sum)
    {
        // Sort input array
        arr.sort(function(a, b){return a - b});
 
        // Every iteration of loop
        // counts triplet with
        // first element as arr[i].
        for (let i = 0; i < n - 2; i++)
        {
 
            // Initialize other two elements
            // as corner elements of subarray
            // arr[j+1..k]
            let j = i + 1, k = n - 1;
 
            // Use Meet in the
            // Middle concept
            while (j < k)
            {
 
                // If sum of current triplet
                // is more or equal, move right
                // corner to look for smaller values
                if (arr[i] + arr[j] + arr[k] >= sum)
                    k--;
 
                // Else move left corner
                else
                {
 
                    // This is important. For
                    // current i and j, there
                    // are total k-j third elements.
                    for (let x = j + 1; x <= k; x++)
                        document.write(arr[i] + ", " +
                                        arr[j] + ", " +
                                        arr[x] + "</br>");
                    j++;
                }
            }
        }
    }
     
    let arr = [ 5, 1, 3, 4, 7 ];
    let n = arr.length;
    let sum = 12;
    printTriplets(arr, n, sum);
     
</script>


Output

1, 3, 4
1, 3, 5
1, 3, 7
1, 4, 5

Time Complexity: O(N*N)

Auxiliary Space: O(1)

Print triplets with sum less than k in python:

Python3




# program to print all triplets with sum less than k
 
def print_triplets(arr, k):
    n = len(arr)
    count = 0
     
    # sort the array in non-decreasing order
    arr.sort()
     
    # iterate through all possible triplets
    for i in range(n-2):
        j = i+1
        k = n-1
        while j < k:
            # calculate the sum of the triplet
            triplet_sum = arr[i] + arr[j] + arr[k]
            # if the sum is less than k, print the triplet and update the count
            if triplet_sum < k:
                print(arr[i], arr[j], arr[k])
                count += 1
                j += 1
            # if the sum is greater than or equal to k, decrement k
            else:
                k -= 1
    # return the count of triplets with sum less than k
    return count
 
# example usage
arr = [5, 1, 3, 4, 7]
k = 12
count = print_triplets(arr, k)
print("Total number of triplets with sum less than", k, "is", count)


Output

Total number of triplets with sum less than 12 is 0

Time Complexity: O(N^2)

Auxiliary Space: O(1)

Approach:

1.Define a function print_triplets that takes two arguments: an array arr and an integer k. The function will return the count of triplets with sum less than k.
2.Get the length of the array n, and initialize a variable count to 0 to keep track of the number of triplets.
3.Sort the input array arr in non-decreasing order, using the built-in sort() function. This is done to simplify the algorithm and allow us to stop iterating when we find a triplet with sum greater than or equal to k.
4.Use a nested loop to iterate through all possible triplets of the input array arr. The outer loop will iterate from the first element to the second to last element, while the inner loop will iterate from the element following the current outer loop element to the last element.
5.For each triplet, calculate the sum of the triplet triplet_sum as the sum of the current outer loop element, the current inner loop element, and the last element of the array.
6.If triplet_sum is less than k, print the triplet and increment the count variable by 1.
7.If triplet_sum is greater than or equal to k, decrement the index of the last element of the array to move to the next smaller element, and continue checking triplets.
8.After iterating through all possible triplets, return the count of triplets with sum less than k.
9.In the example usage, create an input array arr and an integer k, and call the print_triplets function with these arguments. Finally, print the total number of triplets found.

Time complexity: O(n^2), where n is the size of the input array

Space complexity: O(1)

Feeling lost in the world of random DSA topics, wasting time without progress? It’s time for a change! Join our DSA course, where we’ll guide you on an exciting journey to master DSA efficiently and on schedule.
Ready to dive in? Explore our Free Demo Content and join our DSA course, trusted by over 100,000 neveropen!

RELATED ARTICLES

Most Popular

Recent Comments