You are given a sequence of numbers arr[0], arr[1], …, arr[N – 1] and a positive integer K. In each operation, you may subtract K from any element of the array. You are required to find the minimum number of operations to make the given array decreasing.
An array is called decreasing if for each i: .
Input : N = 4, K = 5, arr[] = {1, 1, 2, 3}
Output : 3Explanation :
Since arr[1] == arr[0] so no subtraction is required for arr[1]. For arr[2], since arr[2] > arr[1] (2 > 1) so we have to subtract arr[2] by k and after the one subtraction value of arr[2] is -3 which is less than the value of arr[1], so number of subtraction required only 1 and now value of arr[2] has been updated by -3.
Similarly for arr[3], since arr[3] > arr[2] (3 > -3) so for this we have to subtract arr[3] by k two times to make the value of arr[3] lesser than arr[2], the number of subtraction required 2 and the updated value of arr[3] is -7. Now count total number of subtraction /operation required by adding number of operation on each step and that is = 0+1+2 = 3.Input : N = 5, K = 2, arr[] = {5, 4, 3, 2, 1}
Output : 0
Approach :
1. Traverse each element of array from 1 to n-1.
2. Check if (arr[i] > arr[i-1]) then
Find noOfSubtraction;
noOfSubtraction = If ( (arr[i] – arr[i-1]) % k == 0 ) then noOfSubtraction++Modify arr[i]; arr[i] =
Below is implementation of above approach :
CPP
// CPP program to make an array decreasing #include <bits/stdc++.h> using namespace std; // Function to count minimum no of operation int min_noOf_operation( int arr[], int n, int k) { int noOfSubtraction; int res = 0; for ( int i = 1; i < n; i++) { noOfSubtraction = 0; if (arr[i] > arr[i - 1]) { // Count how many times we have to subtract. noOfSubtraction = (arr[i] - arr[i - 1]) / k; // Check an additional subtraction is // required or not. if ((arr[i] - arr[i - 1]) % k != 0) noOfSubtraction++; // Modify the value of arr[i]. arr[i] = arr[i] - k * noOfSubtraction; } // Count total no of operation/subtraction . res = res + noOfSubtraction; } return res; } // Driver Code int main() { int arr[] = { 1, 1, 2, 3 }; int N = sizeof (arr) / sizeof (arr[0]); int k = 5; cout << min_noOf_operation(arr, N, k) << endl; return 0; } |
Java
// Java program to make an // array decreasing import java.util.*; import java.lang.*; public class GfG{ // Function to count minimum no of operation public static int min_noOf_operation( int arr[], int n, int k) { int noOfSubtraction; int res = 0 ; for ( int i = 1 ; i < n; i++) { noOfSubtraction = 0 ; if (arr[i] > arr[i - 1 ]) { // Count how many times // we have to subtract. noOfSubtraction = (arr[i] - arr[i - 1 ]) / k; // Check an additional subtraction // is required or not. if ((arr[i] - arr[i - 1 ]) % k != 0 ) noOfSubtraction++; // Modify the value of arr[i] arr[i] = arr[i] - k * noOfSubtraction; } // Count total no of subtraction res = res + noOfSubtraction; } return res; } // driver function public static void main(String argc[]){ int arr = { 1 , 1 , 2 , 3 }; int N = 4 ; int k = 5 ; System.out.println(min_noOf_operation(arr, N, k)); } } /* This code is contributed by Sagar Shukla */ |
Python3
# Python program to make an array decreasing # Function to count minimum no of operation def min_noOf_operation(arr, n, k): res = 0 for i in range ( 1 ,n): noOfSubtraction = 0 if (arr[i] > arr[i - 1 ]): # Count how many times we have to subtract. noOfSubtraction = (arr[i] - arr[i - 1 ]) / k; # Check an additional subtraction is # required or not. if ((arr[i] - arr[i - 1 ]) % k ! = 0 ): noOfSubtraction + = 1 # Modify the value of arr[i]. arr[i] = arr[i] - k * noOfSubtraction # Count total no of operation/subtraction . res = res + noOfSubtraction return int (res) # Driver Code arr = [ 1 , 1 , 2 , 3 ] N = len (arr) k = 5 print (min_noOf_operation(arr, N, k)) # This code is contributed by # Smitha Dinesh Semwal |
C#
// C# program to make an // array decreasing using System; public class GfG{ // Function to count minimum no of operation public static int min_noOf_operation( int []arr, int n, int k) { int noOfSubtraction; int res = 0; for ( int i = 1; i < n; i++) { noOfSubtraction = 0; if (arr[i] > arr[i - 1]) { // Count how many times // we have to subtract. noOfSubtraction = (arr[i] - arr[i - 1]) / k; // Check an additional subtraction // is required or not. if ((arr[i] - arr[i - 1]) % k != 0) noOfSubtraction++; // Modify the value of arr[i] arr[i] = arr[i] - k * noOfSubtraction; } // Count total no of subtraction res = res + noOfSubtraction; } return res; } // driver function public static void Main() { int []arr = { 1, 1, 2, 3 }; int N = 4; int k = 5; Console.WriteLine(min_noOf_operation(arr, N, k)); } } // This code is contributed by vt_m |
PHP
<?php // PHP program to make an array decreasing // Function to count minimum no of operation function min_noOf_operation( $arr , $n , $k ) { $noOfSubtraction ; $res = 0; for ( $i = 1; $i < $n ; $i ++) { $noOfSubtraction = 0; if ( $arr [ $i ] > $arr [ $i - 1]) { // Count how many times we // have to subtract. $noOfSubtraction = ( $arr [ $i ] - $arr [ $i - 1]) / $k ; // Check an additional subtraction // is required or not. if (( $arr [ $i ] - $arr [ $i - 1]) % $k != 0) $noOfSubtraction ++; // Modify the value of arr[i]. $arr [ $i ] = $arr [ $i ] - $k * $noOfSubtraction ; } // Count total no of // operation/subtraction . $res = $res + $noOfSubtraction ; } return floor ( $res ); } // Driver Code $arr = array (1, 1, 2, 3); $N = count ( $arr ); $k = 5; echo min_noOf_operation( $arr , $N , $k ) ; // This code is contributed by anuj_67. ?> |
Javascript
<script> // JavaScript program to make an // array decreasing // Function to count minimum no of operation function min_noOf_operation(arr, n, k) { let noOfSubtraction; let res = 0; for (let i = 1; i < n; i++) { noOfSubtraction = 0; if (arr[i] > arr[i - 1]) { // Count how many times // we have to subtract. noOfSubtraction = (arr[i] - arr[i - 1]) / k; // Check an additional subtraction // is required or not. if ((arr[i] - arr[i - 1]) % k != 0) noOfSubtraction++; // Modify the value of arr[i] arr[i] = arr[i] - k * noOfSubtraction; } // Count total no of subtraction res = res + noOfSubtraction; } return res; } // Driver code let arr = [ 1, 1, 2, 3 ]; let N = 4; let k = 5; document.write(Math.floor(min_noOf_operation(arr, N, k))); // This code is contributed by code_hunt. </script> |
3
Time Complexity : O(N).
Auxiliary Space: O(1).
Ready to dive in? Explore our Free Demo Content and join our DSA course, trusted by over 100,000 neveropen!