Monday, January 13, 2025
Google search engine

Curzon Numbers

Given an integer N, check whether the given number is a Curzon Number or not.

A number N is said to be a Curzon Number if 2N + 1 is divisible by 2*N + 1.

Example: 

Input: N = 5 
Output: Yes 
Explanation: 
2^5 + 1 = 33 and 2*5 + 1 = 11 
Since 11 divides 33, so 5 is a curzon number.

Input: N = 10 
Output: No 
Explanation: 
2^10 + 1 = 1025 and 2*10 + 1 = 21 
1025 is not divisible by 21, so 10 is not a curzon number. 
 

Approach: The approach is to compute and check if 2N + 1 is divisible by 2*N + 1 or not.  

  • First find the value of 2*N + 1
  • Then find the value of 2N + 1
  • Check if the second value is divisible by the first value, then it is a Curzon Number, else not.

Below is the implementation of the above approach: 

C++




// C++ implementation of the approach
 
#include <bits/stdc++.h>
using namespace std;
 
// Function to check if a number
// is a Curzon number or not
void checkIfCurzonNumber(int N)
{
 
    long int powerTerm, productTerm;
 
    // Find 2^N + 1
    powerTerm = pow(2, N) + 1;
 
    // Find 2*N + 1
    productTerm = 2 * N + 1;
 
    // Check for divisibility
    if (powerTerm % productTerm == 0)
        cout << "Yes\n";
    else
        cout << "No\n";
}
 
// Driver code
int main()
{
    long int N = 5;
    checkIfCurzonNumber(N);
 
    N = 10;
    checkIfCurzonNumber(N);
 
    return 0;
}


Java




// Java implementation of the approach
import java.io.*;
import java.util.*;
 
class GFG {
     
// Function to check if a number
// is a Curzon number or not
static void checkIfCurzonNumber(long N)
{
    double powerTerm, productTerm;
 
    // Find 2^N + 1
    powerTerm = Math.pow(2, N) + 1;
 
    // Find 2*N + 1
    productTerm = 2 * N + 1;
 
    // Check for divisibility
    if (powerTerm % productTerm == 0)
        System.out.println("Yes");
    else
        System.out.println("No");
}
 
// Driver code
public static void main(String[] args)
{
    long N = 5;
    checkIfCurzonNumber(N);
     
    N = 10;
    checkIfCurzonNumber(N);
}
}
 
// This code is contributed by coder001


Python3




# Python3 implementation of the approach
 
# Function to check if a number
# is a Curzon number or not
def checkIfCurzonNumber(N):
 
    powerTerm, productTerm = 0, 0
 
    # Find 2^N + 1
    powerTerm = pow(2, N) + 1
 
    # Find 2*N + 1
    productTerm = 2 * N + 1
 
    # Check for divisibility
    if (powerTerm % productTerm == 0):
        print("Yes")
    else:
        print("No")
 
# Driver code
if __name__ == '__main__':
     
    N = 5
    checkIfCurzonNumber(N)
 
    N = 10
    checkIfCurzonNumber(N)
 
# This code is contributed by mohit kumar 29


C#




// C# implementation of the approach
using System;
 
class GFG{
     
// Function to check if a number
// is a curzon number or not
static void checkIfCurzonNumber(long N)
{
    double powerTerm, productTerm;
 
    // Find 2^N + 1
    powerTerm = Math.Pow(2, N) + 1;
 
    // Find 2*N + 1
    productTerm = 2 * N + 1;
 
    // Check for divisibility
    if (powerTerm % productTerm == 0)
        Console.WriteLine("Yes");
    else
        Console.WriteLine("No");
}
 
// Driver code
static public void Main ()
{
    long N = 5;
    checkIfCurzonNumber(N);
     
    N = 10;
    checkIfCurzonNumber(N);
}
}
 
// This code is contributed by shubhamsingh10


Javascript




<script>
 
// Javascript implementation of the approach
 
// Function to check if a number
// is a Curzon number or not
function checkIfCurzonNumber(N)
{
    var powerTerm, productTerm;
     
    // Find 2^N + 1
    powerTerm = Math.pow(2, N) + 1;
     
    // Find 2*N + 1
    productTerm = 2 * N + 1;
     
    // Check for divisibility
    if (powerTerm % productTerm == 0)
    {
        document.write("Yes" + "</br>");
    }
    else
    {
        document.write("No");
    }
}
 
// Driver code
var N = 5;
checkIfCurzonNumber(N);
     
N = 10;
checkIfCurzonNumber(N);
 
// This code is contributed by Ankita saini
    
</script>


Output: 

Yes
No

 

Time complexity: O(log N)

Auxiliary Space: O(1)
 

Feeling lost in the world of random DSA topics, wasting time without progress? It’s time for a change! Join our DSA course, where we’ll guide you on an exciting journey to master DSA efficiently and on schedule.
Ready to dive in? Explore our Free Demo Content and join our DSA course, trusted by over 100,000 neveropen!

RELATED ARTICLES

Most Popular

Recent Comments