We are given n blocks of size 1 x 1, we need to find the minimum perimeter of the grid made by these blocks.
Examples :
Input : n = 4 Output : 8 Minimum possible perimeter with 4 blocks is 8. See below explanation. Input : n = 11 Output : 14 The square grid of above examples would be as
Let us take an example to see a pattern. Let us say that we have 4 blocks, following are different possibilities
+--+--+--+--+ | | | | | Perimeter = 10 +--+--+--+--+ +--+--+--+ | | | | Perimeter = 10 +--+--+--+ | | +--+ +--+--+--+ | | | | Perimeter = 10 +--+--+--+ | | +--+ +--+--+ | | | Perimeter = 8 +--+--+ | | | +--+--+
If we do some examples using pen and paper, we can notice that the perimeter becomes minimum when the shape formed is closest to a square. The reason for this is, we want maximum sides of blocks to face inside the shape so that perimeter of the shape becomes minimum.
If the Number of blocks is a perfect square then the perimeter would simply be 4*sqrt(n).
But, if the Number of blocks is not a perfect square root then we calculate number of rows and columns closest to square root. After arranging the blocks in a rectangular we still have blocks left then we will simply add 2 to the perimeter because only 2 extra side would be left.
The implementation of the above idea is given below.
C++
// CPP program to find minimum // perimeter using n blocks. #include <bits/stdc++.h> using namespace std; int minPerimeter( int n) { int l = sqrt (n); int sq = l * l; // if n is a perfect square if (sq == n) return l * 4; else { // Number of rows long long int row = n / l; // perimeter of the // rectangular grid long long int perimeter = 2 * (l + row); // if there are blocks left if (n % l != 0) perimeter += 2; return perimeter; } } // Driver code int main() { int n = 10; cout << minPerimeter(n); return 0; } |
Java
// JAVA Code to find minimum // perimeter using n blocks import java.util.*; class GFG { public static long minPerimeter( int n) { int l = ( int ) Math.sqrt(n); int sq = l * l; // if n is a perfect square if (sq == n) return l * 4 ; else { // Number of rows long row = n / l; // perimeter of the // rectangular grid long perimeter = 2 * (l + row); // if there are blocks left if (n % l != 0 ) perimeter += 2 ; return perimeter; } } // Driver code public static void main(String[] args) { int n = 10 ; System.out.println(minPerimeter(n)); } } // This code is contributed by Arnav Kr. Mandal |
Python3
# Python3 program to find minimum # perimeter using n blocks. import math def minPerimeter(n): l = math.sqrt(n) sq = l * l # if n is a perfect square if (sq = = n): return l * 4 else : # Number of rows row = n / l # perimeter of the # rectangular grid perimeter = 2 * (l + row) # if there are blocks left if (n % l ! = 0 ): perimeter + = 2 return perimeter # Driver code n = 10 print ( int (minPerimeter(n))) # This code is contributed by # Prasad Kshirsagar |
C#
// C# Code to find minimum // perimeter using n blocks using System; class GFG { public static long minPerimeter( int n) { int l = ( int ) Math.Sqrt(n); int sq = l * l; // if n is a perfect square if (sq == n) return l * 4; else { // Number of rows long row = n / l; // perimeter of the // rectangular grid long perimeter = 2 * (l + row); // if there are blocks left if (n % l != 0) perimeter += 2; return perimeter; } } // Driver code public static void Main() { int n = 10; Console.Write(minPerimeter(n)); } } // This code is contributed by nitin mittal |
PHP
<?php // PHP program to find minimum // perimeter using n blocks. function minPerimeter( $n ) { $l = floor (sqrt( $n )); $sq = $l * $l ; // if n is a perfect square if ( $sq == $n ) return $l * 4; else { // Number of rows $row = floor ( $n / $l ); // perimeter of the // rectangular grid $perimeter = 2 * ( $l + $row ); // if there are blocks left if ( $n % $l != 0) $perimeter += 2; return $perimeter ; } } // Driver code $n = 10; echo minPerimeter( $n ); // This code is contributed // by nitin mittal. ?> |
Javascript
<script> // JavaScript program for the // above approach function minPerimeter(n) { let l = Math.sqrt(n); let sq = l * l; // if n is a perfect square if (sq == n) return l * 4; else { // Number of rows let row = n / l; // perimeter of the // rectangular grid let perimeter = 2 * (l + row); // if there are blocks left if (n % l != 0) perimeter += 2; return perimeter; } } // Driver Code let n = 10; document.write(Math.floor(minPerimeter(n))) </script> |
Output :
14
Time complexity : O(logn)
Auxiliary Space : O(1)
References :
http://mathforum.org/library/drmath/view/61595.html
intermath.coe.uga.edu/tweb/gcsu-geo-spr06/aheath/aheath_rectperimeter.doc
This article is contributed by Sarthak Kohli. If you like neveropen and would like to contribute, you can also write an article using write.geeksforgeeks.org or mail your article to review-team@geeksforgeeks.org. See your article appearing on the neveropen main page and help other Geeks.
Please write comments if you find anything incorrect, or you want to share more information about the topic discussed above.
Ready to dive in? Explore our Free Demo Content and join our DSA course, trusted by over 100,000 neveropen!