Given a set of numbers, find the Length of the Longest Geometrix Progression (LLGP) in it. The common ratio of GP must be an integer.
Examples:
set[] = {5, 7, 10, 15, 20, 29} output = 3 The longest geometric progression is {5, 10, 20} set[] = {3, 9, 27, 81} output = 4
This problem is similar to Longest Arithmetic Progression Problem. We can solve this problem using Dynamic Programming.
We first sort the given set. We use an auxiliary table L[n][n] to store results of subproblems. An entry L[i][j] in this table stores LLGP with set[i] and set[j] as first two elements of GP and j > i. The table is filled from bottom right to top left. To fill the table, j (second element in GP) is first fixed. i and k are searched for a fixed j. If i and k are found such that i, j, k form an GP, then the value of L[i][j] is set as L[j][k] + 1. Note that the value of L[j][k] must have been filled before as the loop traverses from right to left columns.
Following is the implementation of the Dynamic Programming algorithm.
C++
// C++ program to find length // of the longest geometric // progression in a given set #include <iostream> #include <algorithm> using namespace std; // Returns length of the // longest GP subset of set[] int lenOfLongestGP( int set[], int n) { // Base cases if (n < 2) return n; if (n == 2) return (set[1] % set[0] == 0) ? 2 : 1; // Let us sort the set first sort(set, set+n); // An entry L[i][j] in this // table stores LLGP with // set[i] and set[j] as first // two elements of GP // and j > i. int L[n][n]; // Initialize result (A single element // is always a GP) int llgp = 1; // Initialize values of last column for ( int i = 0; i < n - 1; ++i) { if (set[n-1] % set[i] == 0) { L[i][n-1] = 2; if (2 > llgp) llgp = 2; } else { L[i][n-1] = 1; } } L[n-1][n-1] = 1; // Consider every element as // second element of GP for ( int j = n - 2; j >= 1; --j) { // Search for i and k for j int i = j - 1, k = j+1; while (i>=0 && k <= n-1) { // Two cases when i, j and k don't form // a GP. if (set[i] * set[k] < set[j]*set[j]) { ++k; } else if (set[i] * set[k] > set[j]*set[j]) { if (set[j] % set[i] == 0) { L[i][j] = 2; } else { L[i][j] = 1; } --i; } // i, j and k form GP, LLGP with i and j as // first two elements is equal to LLGP with // j and k as first two elements plus 1. // L[j][k] must have been filled before as // we run the loop from right side else { if (set[j] % set[i] == 0) { L[i][j] = L[j][k] + 1; // Update overall LLGP if (L[i][j] > llgp) llgp = L[i][j]; } else { L[i][j] = 1; } // Change i and k to fill more L[i][j] // values for current j --i; ++k; } } // If the loop was stopped due to k becoming // more than n-1, set the remaining entries // in column j as 1 or 2 based on divisibility // of set[j] by set[i] while (i >= 0) { if (set[j] % set[i] == 0) { L[i][j] = 2; if (2 > llgp) llgp = 2; } else L[i][j] = 1; --i; } } // Return result return llgp; } // Driver code int main() { int set1[] = {1, 3, 9, 27, 81, 243}; int n1 = sizeof (set1)/ sizeof (set1[0]); cout << lenOfLongestGP(set1, n1) << "\n" ; int set2[] = {1, 3, 4, 9, 7, 27}; int n2 = sizeof (set2)/ sizeof (set2[0]); cout << lenOfLongestGP(set2, n2) << "\n" ; int set3[] = {2, 3, 5, 7, 11, 13}; int n3 = sizeof (set3)/ sizeof (set3[0]); cout << lenOfLongestGP(set3, n3) << "\n" ; return 0; } |
Java
// Java program to find length // of the longest geometric // progression in a given set import java.util.*; class GFG { // Returns length of the longest GP subset of set[] static int lenOfLongestGP( int set[], int n) { // Base cases if (n < 2 ) { return n; } if (n == 2 ) { return (set[ 1 ] % set[ 0 ] == 0 ? 2 : 1 ); } // Let us sort the set first Arrays.sort(set); // An entry L[i][j] in this table // stores LLGP with set[i] and set[j] // as first two elements of GP // and j > i. int L[][] = new int [n][n]; // Initialize result (A single // element is always a GP) int llgp = 1 ; // Initialize values of last column for ( int i = 0 ; i < n - 1 ; ++i) { if (set[n - 1 ] % set[i] == 0 ) { L[i][n - 1 ] = 2 ; if ( 2 > llgp) llgp = 2 ; } else { L[i][n - 1 ] = 1 ; } } L[n - 1 ][n - 1 ] = 1 ; // Consider every element as second element of GP for ( int j = n - 2 ; j >= 1 ; --j) { // Search for i and k for j int i = j - 1 , k = j + 1 ; while (i >= 0 && k <= n - 1 ) { // Two cases when i, j and k // don't form a GP. if (set[i] * set[k] < set[j] * set[j]) { ++k; } else if (set[i] * set[k] > set[j] * set[j]) { if (set[j] % set[i] == 0 ) { L[i][j] = 2 ; if ( 2 > llgp) llgp = 2 ; } else { L[i][j] = 1 ; } --i; } // i, j and k form GP, LLGP with i and j as // first two elements is equal to LLGP with // j and k as first two elements plus 1. // L[j][k] must have been filled before as // we run the loop from right side else { if (set[j] % set[i] == 0 ) { L[i][j] = L[j][k] + 1 ; // Update overall LLGP if (L[i][j] > llgp) { llgp = L[i][j]; } } else { L[i][j] = 1 ; } // Change i and k to fill more L[i][j] // values for current j --i; ++k; } } // If the loop was stopped due to k becoming // more than n-1, set the remaining entries // in column j as 1 or 2 based on divisibility // of set[j] by set[i] while (i >= 0 ) { if (set[j] % set[i] == 0 ) { L[i][j] = 2 ; if ( 2 > llgp) llgp = 2 ; } else { L[i][j] = 1 ; } --i; } } // Return result return llgp; } // Driver code public static void main(String[] args) { int set1[] = { 1 , 3 , 9 , 27 , 81 , 243 }; int n1 = set1.length; System.out.print(lenOfLongestGP(set1, n1) + "\n" ); int set2[] = { 1 , 3 , 4 , 9 , 7 , 27 }; int n2 = set2.length; System.out.print(lenOfLongestGP(set2, n2) + "\n" ); int set3[] = { 2 , 3 , 5 , 7 , 11 , 13 }; int n3 = set3.length; System.out.print(lenOfLongestGP(set3, n3) + "\n" ); } } /* This code contributed by PrinciRaj1992 */ |
Python3
# Python3 program to find length # of the longest geometric # progression in a given set # Returns length of the longest GP # subset of sett[] def lenOfLongestGP(sett, n): # Base cases if n < 2 : return n if n = = 2 : return 2 if (sett[ 1 ] % sett[ 0 ] = = 0 ) else 1 # let us sort the sett first sett.sort() # An entry L[i][j] in this # table stores LLGP with # sett[i] and sett[j] as first # two elements of GP # and j > i. L = [[ 0 for i in range (n)] for i in range (n)] # Initialize result (A single # element is always a GP) llgp = 1 # Initialize values of last column for i in range ( 0 , n - 1 ): if sett[n - 1 ] % sett[i] = = 0 : L[i][n - 1 ] = 2 if 2 > llgp: llgp = 2 else : L[i][n - 1 ] = 1 L[n - 1 ][n - 1 ] = 1 # Consider every element as second element of GP for j in range (n - 2 , 0 , - 1 ): # Search for i and k for j i = j - 1 k = j + 1 while i > = 0 and k < = n - 1 : # Two cases when i, j and k don't form # a GP. if sett[i] * sett[k] < sett[j] * sett[j]: k + = 1 else if sett[i] * sett[k] > sett[j] * sett[j]: if sett[j] % sett[i] = = 0 : L[i][j] = 2 else : L[i][j] = 1 i - = 1 # i, j and k form GP, LLGP with i and j as # first two elements is equal to LLGP with # j and k as first two elements plus 1. # L[j][k] must have been filled before as # we run the loop from right side else : if sett[j] % sett[i] = = 0 : L[i][j] = L[j][k] + 1 # Update overall LLGP if L[i][j] > llgp: llgp = L[i][j] else : L[i][j] = 1 # Change i and k to fill more L[i][j] # values for current j i - = 1 k + = 1 # If the loop was stopped due to k becoming # more than n-1, set the remaining entries # in column j as 1 or 2 based on divisibility # of sett[j] by sett[i] while i > = 0 : if sett[j] % sett[i] = = 0 : L[i][j] = 2 else : L[i][j] = 1 i - = 1 return llgp # Driver code if __name__ = = '__main__' : set1 = [ 1 , 3 , 9 , 27 , 81 , 243 ] n1 = len (set1) print (lenOfLongestGP(set1, n1)) set2 = [ 1 , 3 , 4 , 9 , 7 , 27 ] n2 = len (set2) print (lenOfLongestGP(set2, n2)) set3 = [ 2 , 3 , 5 , 7 , 11 , 13 ] n3 = len (set3) print (lenOfLongestGP(set3, n3)) # this code is contributed by sahilshelangia |
C#
// C# program to find length // of the longest geometric // progression in a given Set using System; class GFG { // Returns length of the // longest GP subset of Set[] static int lenOfLongestGP( int []Set, int n) { // Base cases if (n < 2) { return n; } if (n == 2) { return (Set[1] % Set[0] == 0 ? 2 : 1); } // Let us sort the Set first Array.Sort(Set); // An entry L[i,j] in this table // stores LLGP with Set[i] and Set[j] // as first two elements of GP // and j > i. int [,]L = new int [n, n]; // Initialize result (A single // element is always a GP) int llgp = 1; // Initialize values of last column for ( int i = 0; i < n - 1; ++i) { if (Set[n - 1] % Set[i] == 0) { L[i, n - 1] = 2; if (2 > llgp) llgp = 2; } else { L[i, n - 1] = 1; } } L[n - 1, n - 1] = 1; // Consider every element // as second element of GP for ( int j = n - 2; j >= 1; --j) { // Search for i and k for j int i = j - 1, k = j + 1; while (i >= 0 && k <= n - 1) { // Two cases when i, j and k // don't form a GP. if (Set[i] * Set[k] < Set[j] * Set[j]) { ++k; } else if (Set[i] * Set[k] > Set[j] * Set[j]) { if (Set[j] % Set[i] == 0) { L[i,j] = 2; if (2 > llgp) llgp = 2; } else { L[i,j] = 1; } --i; } // i, j and k form GP, LLGP with i and j as // first two elements is equal to LLGP with // j and k as first two elements plus 1. // L[j,k] must have been filled before as // we run the loop from right side else { if (Set[j] % Set[i] == 0) { L[i, j] = L[j, k] + 1; // Update overall LLGP if (L[i, j] > llgp) { llgp = L[i, j]; } } else { L[i, j] = 1; } // Change i and k to fill more L[i,j] // values for current j --i; ++k; } } // If the loop was stopped due to k becoming // more than n-1, set the remaining entries // in column j as 1 or 2 based on divisibility // of Set[j] by Set[i] while (i >= 0) { if (Set[j] % Set[i] == 0) { L[i, j] = 2; if (2 > llgp) llgp = 2; } else { L[i, j] = 1; } --i; } } // Return result return llgp; } // Driver code public static void Main(String[] args) { int []set1 = {1, 3, 9, 27, 81, 243}; int n1 = set1.Length; Console.Write(lenOfLongestGP(set1, n1) + "\n" ); int []set2 = {1, 3, 4, 9, 7, 27}; int n2 = set2.Length; Console.Write(lenOfLongestGP(set2, n2) + "\n" ); int []set3 = {2, 3, 5, 7, 11, 13}; int n3 = set3.Length; Console.Write(lenOfLongestGP(set3, n3) + "\n" ); } } // This code has been contributed by 29AjayKumar |
Javascript
<script> // Javascript program to find length // of the longest geometric // progression in a given set // Returns length of the longest GP subset of set[] function lenOfLongestGP(set, n) { // Base cases if (n < 2) { return n; } if (n == 2) { return (set[1] % set[0] == 0 ? 2 : 1); } // Let us sort the set first set.sort( function (a, b){ return a - b}); // An entry L[i][j] in this table // stores LLGP with set[i] and set[j] // as first two elements of GP // and j > i. let L = new Array(n); for (let i = 0; i < n; ++i) { L[i] = new Array(n); for (let j = 0; j < n; ++j) { L[i][j] = 0; } } // Initialize result (A single // element is always a GP) let llgp = 1; // Initialize values of last column for (let i = 0; i < n - 1; ++i) { if (set[n - 1] % set[i] == 0) { L[i][n - 1] = 2; if (2 > llgp) llgp = 2; } else { L[i][n - 1] = 1; } } L[n - 1][n - 1] = 1; // Consider every element as second element of GP for (let j = n - 2; j >= 1; --j) { // Search for i and k for j let i = j - 1, k = j + 1; while (i >= 0 && k <= n - 1) { // Two cases when i, j and k // don't form a GP. if (set[i] * set[k] < set[j] * set[j]) { ++k; } else if (set[i] * set[k] > set[j] * set[j]) { if (set[j] % set[i] == 0) { L[i][j] = 2; if (2 > llgp) llgp = 2; } else { L[i][j] = 1; } --i; } // i, j and k form GP, LLGP with i and j as // first two elements is equal to LLGP with // j and k as first two elements plus 1. // L[j][k] must have been filled before as // we run the loop from right side else { if (set[j] % set[i] == 0) { L[i][j] = L[j][k] + 1; // Update overall LLGP if (L[i][j] > llgp) { llgp = L[i][j]; } } else { L[i][j] = 1; } // Change i and k to fill more L[i][j] // values for current j --i; ++k; } } // If the loop was stopped due to k becoming // more than n-1, set the remaining entries // in column j as 1 or 2 based on divisibility // of set[j] by set[i] while (i >= 0) { if (set[j] % set[i] == 0) { L[i][j] = 2; if (2 > llgp) llgp = 2; } else { L[i][j] = 1; } --i; } } // Return result return llgp; } let set1 = [ 1, 3, 9, 27, 81, 243 ]; let n1 = set1.length; document.write(lenOfLongestGP(set1, n1) + "</br>" ); let set2 = [ 1, 3, 4, 9, 7, 27 ]; let n2 = set2.length; document.write(lenOfLongestGP(set2, n2) + "</br>" ); let set3 = [ 2, 3, 5, 7, 11, 13 ]; let n3 = set3.length; document.write(lenOfLongestGP(set3, n3) + "</br>" ); // This code is contributed by rameshtravel07. </script> |
Output:
6 4 1
Time Complexity: O(n2)
Auxiliary Space: O(n2)
This article is contributed by Vivek Pandya. If you like neveropen and would like to contribute, you can also write an article using write.geeksforgeeks.org or mail your article to review-team@geeksforgeeks.org. See your article appearing on the neveropen main page and help other Geeks.
Please write comments if you find anything incorrect, or you want to share more information about the topic discussed above.
Ready to dive in? Explore our Free Demo Content and join our DSA course, trusted by over 100,000 neveropen!