Thursday, January 9, 2025
Google search engine
HomeData Modelling & AILongest Geometric Progression

Longest Geometric Progression

Given a set of numbers, find the Length of the Longest Geometrix Progression (LLGP) in it. The common ratio of GP must be an integer.
Examples: 

set[] = {5, 7, 10, 15, 20, 29}
output = 3
The longest geometric progression is {5, 10, 20}

set[] = {3, 9, 27, 81}
output = 4
Recommended Practice

This problem is similar to Longest Arithmetic Progression Problem. We can solve this problem using Dynamic Programming. 
We first sort the given set. We use an auxiliary table L[n][n] to store results of subproblems. An entry L[i][j] in this table stores LLGP with set[i] and set[j] as first two elements of GP and j > i. The table is filled from bottom right to top left. To fill the table, j (second element in GP) is first fixed. i and k are searched for a fixed j. If i and k are found such that i, j, k form an GP, then the value of L[i][j] is set as L[j][k] + 1. Note that the value of L[j][k] must have been filled before as the loop traverses from right to left columns.
Following is the implementation of the Dynamic Programming algorithm. 

C++




// C++ program to find length 
// of the longest geometric
// progression in a given set
#include <iostream>
#include <algorithm>
using namespace std;
  
// Returns length of the 
// longest GP subset of set[]
int lenOfLongestGP(int set[], int n)
{
    // Base cases
    if (n < 2)
        return n;
    if (n == 2)
        return (set[1] % set[0] == 0) ? 2 : 1;
  
    // Let us sort the set first
    sort(set, set+n);
  
    // An entry L[i][j] in this 
    // table stores LLGP with
    // set[i] and set[j] as first 
    // two elements of GP
    // and j > i.
    int L[n][n];
  
    // Initialize result (A single element 
    // is always a GP)
    int llgp = 1;
  
    // Initialize values of last column
    for (int i = 0; i < n - 1; ++i) {
        if (set[n-1] % set[i] == 0)
        {
            L[i][n-1] = 2;
            if (2 > llgp)
              llgp = 2;
        }
        else
        {
            L[i][n-1] = 1;
        }
    }
    L[n-1][n-1] = 1;
  
  
    // Consider every element as 
    // second element of GP
    for (int j = n - 2; j >= 1; --j)
    {
        // Search for i and k for j
        int i = j - 1, k = j+1;
        while (i>=0 && k <= n-1)
        {
              
            // Two cases when i, j and k don't form
            // a GP.
            if (set[i] * set[k] < set[j]*set[j])
            {
                ++k;
            }
            else if (set[i] * set[k] > set[j]*set[j])
            {
                if (set[j] % set[i] == 0)
                {
                    L[i][j] = 2;
                }
                else
                {
                    L[i][j] = 1;
                }
                --i;
            }
  
  
            // i, j and k form GP, LLGP with i and j as
            // first two elements is equal to LLGP with
            // j and k as first two elements plus 1.
            // L[j][k] must have been filled before as
            // we run the loop from right side
            else
            {
                if (set[j] % set[i] == 0)
                {
                    L[i][j] = L[j][k] + 1;
  
                    // Update overall LLGP
                    if (L[i][j] > llgp)
                        llgp = L[i][j];
                } else {
                  L[i][j] = 1;
                }
  
  
                // Change i and k to fill more L[i][j]
                // values for current j
                --i;
                ++k;
            }
        }
  
        // If the loop was stopped due to k becoming
        // more than n-1, set the remaining entries
        // in column j as 1 or 2 based on divisibility
        // of set[j] by set[i]
        while (i >= 0)
        {
            if (set[j] % set[i] == 0)
            {
                L[i][j] = 2;
                if (2 > llgp)
                    llgp = 2;
            }
            else
                L[i][j] = 1;
            --i;
        }
    }
  
    // Return result
    return llgp;
}
  
// Driver code
int main()
{
    int set1[] = {1, 3, 9, 27, 81, 243};
    int n1 = sizeof(set1)/sizeof(set1[0]);
    cout << lenOfLongestGP(set1, n1) << "\n";
  
    int set2[] = {1, 3, 4, 9, 7, 27};
    int n2 = sizeof(set2)/sizeof(set2[0]);
    cout << lenOfLongestGP(set2, n2) << "\n";
  
    int set3[] = {2, 3, 5, 7, 11, 13};
    int n3 = sizeof(set3)/sizeof(set3[0]);
    cout << lenOfLongestGP(set3, n3) << "\n";
  
    return 0;
}


Java




// Java program to find length
// of the longest geometric
// progression in a given set
import java.util.*;
  
class GFG {
  
    // Returns length of the longest GP subset of set[]
    static int lenOfLongestGP(int set[], int n)
    {
        // Base cases
        if (n < 2) {
            return n;
        }
        if (n == 2) {
            return (set[1] % set[0] == 0 ? 2 : 1);
        }
  
        // Let us sort the set first
        Arrays.sort(set);
  
        // An entry L[i][j] in this table
        // stores LLGP with set[i] and set[j]
        // as first two elements of GP
        // and j > i.
        int L[][] = new int[n][n];
  
        // Initialize result (A single
        // element is always a GP)
        int llgp = 1;
  
        // Initialize values of last column
        for (int i = 0; i < n - 1; ++i) {
            if (set[n - 1] % set[i] == 0) {
                L[i][n - 1] = 2;
                if (2 > llgp)
                    llgp = 2;
            }
            else {
                L[i][n - 1] = 1;
            }
        }
        L[n - 1][n - 1] = 1;
  
        // Consider every element as second element of GP
        for (int j = n - 2; j >= 1; --j) {
            // Search for i and k for j
            int i = j - 1, k = j + 1;
            while (i >= 0 && k <= n - 1) {
                // Two cases when i, j and k
                // don't form a GP.
                if (set[i] * set[k] < set[j] * set[j]) {
                    ++k;
                }
                else if (set[i] * set[k]
                         > set[j] * set[j]) {
                    if (set[j] % set[i] == 0) {
                        L[i][j] = 2;
                        if (2 > llgp)
                            llgp = 2;
                    }
                    else {
                        L[i][j] = 1;
                    }
                    --i;
                }
  
                // i, j and k form GP, LLGP with i and j as
                // first two elements is equal to LLGP with
                // j and k as first two elements plus 1.
                // L[j][k] must have been filled before as
                // we run the loop from right side
                else {
                    if (set[j] % set[i] == 0) {
                        L[i][j] = L[j][k] + 1;
  
                        // Update overall LLGP
                        if (L[i][j] > llgp) {
                            llgp = L[i][j];
                        }
                    }
                    else {
                        L[i][j] = 1;
                    }
  
                    // Change i and k to fill more L[i][j]
                    // values for current j
                    --i;
                    ++k;
                }
            }
  
            // If the loop was stopped due to k becoming
            // more than n-1, set the remaining entries
            // in column j as 1 or 2 based on divisibility
            // of set[j] by set[i]
            while (i >= 0) {
                if (set[j] % set[i] == 0) {
                    L[i][j] = 2;
                    if (2 > llgp)
                        llgp = 2;
                }
                else {
                    L[i][j] = 1;
                }
                --i;
            }
        }
  
        // Return result
        return llgp;
    }
  
    // Driver code
    public static void main(String[] args)
    {
        int set1[] = { 1, 3, 9, 27, 81, 243 };
        int n1 = set1.length;
        System.out.print(lenOfLongestGP(set1, n1) + "\n");
  
        int set2[] = { 1, 3, 4, 9, 7, 27 };
        int n2 = set2.length;
        System.out.print(lenOfLongestGP(set2, n2) + "\n");
  
        int set3[] = { 2, 3, 5, 7, 11, 13 };
        int n3 = set3.length;
        System.out.print(lenOfLongestGP(set3, n3) + "\n");
    }
}
  
/* This code contributed by PrinciRaj1992 */


Python3




# Python3 program to find length 
# of the longest geometric
# progression in a given set
  
# Returns length of the longest GP 
# subset of sett[]
  
def lenOfLongestGP(sett, n):
    # Base cases
    if n < 2:
        return n
    if n == 2:
        return 2 if (sett[1] % sett[0] == 0) else 1
    # let us sort the sett first
    sett.sort()
  
    # An entry L[i][j] in this 
    # table stores LLGP with
    # sett[i] and sett[j] as first 
    # two elements of GP
    # and j > i.
    L = [[0 for i in range(n)] for i in range(n)]
  
    # Initialize result (A single 
    # element is always a GP)
    llgp = 1
  
    # Initialize values of last column
    for i in range(0, n-1):
        if sett[n-1] % sett[i] == 0:
            L[i][n-1] = 2
            if 2 > llgp:
                llgp = 2
        else:
            L[i][n-1] = 1
    L[n-1][n-1] = 1
  
    # Consider every element as second element of GP
    for j in range(n-2, 0, -1):
  
        # Search for i and k for j
        i = j - 1
        k = j + 1
        while i >= 0 and k <= n - 1:
  
            # Two cases when i, j and k don't form
            # a GP.
            if sett[i] * sett[k] < sett[j] * sett[j]:
                k += 1
            else if sett[i] * sett[k] > sett[j] * sett[j]:
                if sett[j] % sett[i] == 0:
                    L[i][j] = 2
                else:
                    L[i][j] = 1
                i -= 1
  
            # i, j and k form GP, LLGP with i and j as
            # first two elements is equal to LLGP with
            # j and k as first two elements plus 1.
            # L[j][k] must have been filled before as
            # we run the loop from right side
            else:
                if sett[j] % sett[i] == 0:
                    L[i][j] = L[j][k] + 1
  
                    # Update overall LLGP
                    if L[i][j] > llgp:
                        llgp = L[i][j]
                else:
                    L[i][j] = 1
  
                # Change i and k to fill more L[i][j]
                # values for current j
                i -= 1
                k += 1
  
        # If the loop was stopped due to k becoming
        # more than n-1, set the remaining entries
        # in column j as 1 or 2 based on divisibility
        # of sett[j] by sett[i]
        while i >= 0:
            if sett[j] % sett[i] == 0:
                L[i][j] = 2
            else:
                L[i][j] = 1
            i -= 1
  
    return llgp
  
  
# Driver code
if __name__ == '__main__':
    set1 = [1, 3, 9, 27, 81, 243]
    n1 = len(set1)
    print(lenOfLongestGP(set1, n1))
  
    set2 = [1, 3, 4, 9, 7, 27]
    n2 = len(set2)
    print(lenOfLongestGP(set2, n2))
  
    set3 = [2, 3, 5, 7, 11, 13]
    n3 = len(set3)
    print(lenOfLongestGP(set3, n3))
  
# this code is contributed by sahilshelangia


C#




// C# program to find length 
// of the longest geometric 
// progression in a given Set 
using System;
  
class GFG
{
  
    // Returns length of the 
    // longest GP subset of Set[] 
    static int lenOfLongestGP(int []Set, int n) 
    {
        // Base cases 
        if (n < 2) 
        {
            return n;
        }
        if (n == 2)
        {
            return (Set[1] % Set[0] == 0 ? 2 : 1);
        }
  
        // Let us sort the Set first 
        Array.Sort(Set);
  
        // An entry L[i,j] in this table 
        // stores LLGP with Set[i] and Set[j]
        // as first two elements of GP 
        // and j > i. 
        int [,]L = new int[n, n];
  
        // Initialize result (A single 
        // element is always a GP) 
        int llgp = 1;
  
        // Initialize values of last column 
        for (int i = 0; i < n - 1; ++i) 
        {
            if (Set[n - 1] % Set[i] == 0)
            {
                L[i, n - 1] = 2;
                if (2 > llgp)
                    llgp  = 2;
            
            else
            {
                L[i, n - 1] = 1;
            }
        }
        L[n - 1, n - 1] = 1;
  
        // Consider every element 
        // as second element of GP 
        for (int j = n - 2; j >= 1; --j) 
        {
            // Search for i and k for j 
            int i = j - 1, k = j + 1;
            while (i >= 0 && k <= n - 1) 
            {
                // Two cases when i, j and k 
                // don't form a GP. 
                if (Set[i] * Set[k] < Set[j] * Set[j])
                {
                    ++k;
                
                else if (Set[i] * Set[k] > Set[j] * Set[j]) 
                {
                    if (Set[j] % Set[i] == 0) 
                    {
                        L[i,j] = 2;
                        if (2 > llgp)
                            llgp = 2;
                    
                    else
                    {
                        L[i,j] = 1;
                    }
                    --i;
                
                  
                // i, j and k form GP, LLGP with i and j as 
                // first two elements is equal to LLGP with 
                // j and k as first two elements plus 1. 
                // L[j,k] must have been filled before as 
                // we run the loop from right side 
                else
                {
                    if (Set[j] % Set[i] == 0) 
                    {
                        L[i, j] = L[j, k] + 1;
  
                        // Update overall LLGP 
                        if (L[i, j] > llgp) 
                        {
                            llgp = L[i, j];
                        }
                    }
                    else
                    {
                        L[i, j] = 1;
                    }
  
                    // Change i and k to fill more L[i,j] 
                    // values for current j 
                    --i;
                    ++k;
                }
            }
  
            // If the loop was stopped due to k becoming 
            // more than n-1, set the remaining entries 
            // in column j as 1 or 2 based on divisibility 
            // of Set[j] by Set[i] 
            while (i >= 0) 
            {
                if (Set[j] % Set[i] == 0) 
                {
                    L[i, j] = 2;
                    if (2 > llgp)
                        llgp = 2;
                
                else
                {
                    L[i, j] = 1;
                }
                --i;
            }
        }
  
        // Return result 
        return llgp;
    }
  
    // Driver code 
    public static void Main(String[] args)
    {
        int []set1 = {1, 3, 9, 27, 81, 243};
        int n1 = set1.Length;
        Console.Write(lenOfLongestGP(set1, n1) + "\n");
  
        int []set2 = {1, 3, 4, 9, 7, 27};
        int n2 = set2.Length;
        Console.Write(lenOfLongestGP(set2, n2) + "\n");
  
        int []set3 = {2, 3, 5, 7, 11, 13};
        int n3 = set3.Length;
        Console.Write(lenOfLongestGP(set3, n3) + "\n");
    }
}
  
// This code has been contributed by 29AjayKumar


Javascript




<script>
    // Javascript program to find length
    // of the longest geometric
    // progression in a given set
      
    // Returns length of the longest GP subset of set[]
    function lenOfLongestGP(set, n)
    {
        // Base cases
        if (n < 2) {
            return n;
        }
        if (n == 2) {
            return (set[1] % set[0] == 0 ? 2 : 1);
        }
   
        // Let us sort the set first
        set.sort(function(a, b){return a - b});
   
        // An entry L[i][j] in this table
        // stores LLGP with set[i] and set[j]
        // as first two elements of GP
        // and j > i.
        let L = new Array(n);
        for (let i = 0; i < n; ++i) 
        {
            L[i] = new Array(n);
            for (let j = 0; j < n; ++j) 
            {
                L[i][j] = 0;
            }
        }
   
        // Initialize result (A single
        // element is always a GP)
        let llgp = 1;
   
        // Initialize values of last column
        for (let i = 0; i < n - 1; ++i) {
            if (set[n - 1] % set[i] == 0) {
                L[i][n - 1] = 2;
                if (2 > llgp)
                    llgp = 2;
            }
            else {
                L[i][n - 1] = 1;
            }
        }
        L[n - 1][n - 1] = 1;
   
        // Consider every element as second element of GP
        for (let j = n - 2; j >= 1; --j) {
            // Search for i and k for j
            let i = j - 1, k = j + 1;
            while (i >= 0 && k <= n - 1) {
                // Two cases when i, j and k
                // don't form a GP.
                if (set[i] * set[k] < set[j] * set[j]) {
                    ++k;
                }
                else if (set[i] * set[k]
                         > set[j] * set[j]) {
                    if (set[j] % set[i] == 0) {
                        L[i][j] = 2;
                        if (2 > llgp)
                            llgp = 2;
                    }
                    else {
                        L[i][j] = 1;
                    }
                    --i;
                }
   
                // i, j and k form GP, LLGP with i and j as
                // first two elements is equal to LLGP with
                // j and k as first two elements plus 1.
                // L[j][k] must have been filled before as
                // we run the loop from right side
                else {
                    if (set[j] % set[i] == 0) {
                        L[i][j] = L[j][k] + 1;
   
                        // Update overall LLGP
                        if (L[i][j] > llgp) {
                            llgp = L[i][j];
                        }
                    }
                    else {
                        L[i][j] = 1;
                    }
   
                    // Change i and k to fill more L[i][j]
                    // values for current j
                    --i;
                    ++k;
                }
            }
   
            // If the loop was stopped due to k becoming
            // more than n-1, set the remaining entries
            // in column j as 1 or 2 based on divisibility
            // of set[j] by set[i]
            while (i >= 0) {
                if (set[j] % set[i] == 0) {
                    L[i][j] = 2;
                    if (2 > llgp)
                        llgp = 2;
                }
                else {
                    L[i][j] = 1;
                }
                --i;
            }
        }
   
        // Return result
        return llgp;
    }
      
    let set1 = [ 1, 3, 9, 27, 81, 243 ];
    let n1 = set1.length;
    document.write(lenOfLongestGP(set1, n1) + "</br>");
  
    let set2 = [ 1, 3, 4, 9, 7, 27 ];
    let n2 = set2.length;
    document.write(lenOfLongestGP(set2, n2) + "</br>");
  
    let set3 = [ 2, 3, 5, 7, 11, 13 ];
    let n3 = set3.length;
    document.write(lenOfLongestGP(set3, n3) + "</br>");
  
// This code is contributed by rameshtravel07.
</script>


Output: 

6
4
1

Time Complexity: O(n2
Auxiliary Space: O(n2)
This article is contributed by Vivek Pandya. If you like neveropen and would like to contribute, you can also write an article using write.geeksforgeeks.org or mail your article to review-team@geeksforgeeks.org. See your article appearing on the neveropen main page and help other Geeks.
Please write comments if you find anything incorrect, or you want to share more information about the topic discussed above. 

Feeling lost in the world of random DSA topics, wasting time without progress? It’s time for a change! Join our DSA course, where we’ll guide you on an exciting journey to master DSA efficiently and on schedule.
Ready to dive in? Explore our Free Demo Content and join our DSA course, trusted by over 100,000 neveropen!

RELATED ARTICLES

Most Popular

Recent Comments