M. Nambiar has devised a mechanism to process any given number and thus generating a new resultant number. He calls this mechanism as the “Nambiar Number Generator” and the resultant number is referred to as the “Nambiar Number”.
Mechanism: In the given number, starting with the first digit, keep on adding all subsequent digits till the state (even or odd) of the sum of the digits is opposite to the state (odd or even) of the first digit. Continue this form the subsequent digit till the last digit of the number is reached. Concatenating the sums thus generates the Nambiar Number.
Examples:
Input: N = 9880127431
Output: 26971
First digit Next valid consecutive digits Resultant number 9880127431 9880127431 26 9880127431 9880127431 269 9880127431 9880127431 2697 9880127431 9880127431 26971 Input: N = 9866364552
Output: 32157
Approach: For the first unused digit from the left check whether it is even or odd. If the digit is even then find the sum of consecutive digits starting at the current digit which is odd (even sum if the first digit was odd). Concatenate this sum to the resultant number and repeat the whole process starting from the first unused digit from the left.
Below is the implementation of the above approach:
C++
// C++ implementation of the approach #include <bits/stdc++.h> using namespace std; // Function to return the Nambiar // number of the given number string numbiarNumber(string str, int i) { // If there is no digit to choose if (i > str.length()) return "" ; // Choose the first digit int firstDigit = str[i] - '0' ; // Chosen digit's parity int digitParity = firstDigit % 2; // To store the sum of the consecutive // digits starting from the chosen digit int sumDigits = 0; // While there are digits to choose while (i < str.length()) { // Update the sum sumDigits += (str[i] - '0' ); int sumParity = sumDigits % 2; // If the parity differs if (digitParity != sumParity) break ; i++; } // Return the current sum concatenated with the // Numbiar number for the rest of the string return (to_string(sumDigits) + numbiarNumber(str, i + 1)); } // Driver code int main() { string str = "9880127431" ; cout << numbiarNumber(str, 0) << endl; return 0; } // This code is contributed by // sanjeev2552 |
Java
// Java implementation of the approach class GFG { // Function to return the Nambiar // number of the given number static String nambiarNumber(String str, int i) { // If there is no digit to choose if (i >= str.length()) return "" ; // Choose the first digit int firstDigit = (str.charAt(i) - '0' ); // Chosen digit's parity int digitParity = firstDigit % 2 ; // To store the sum of the consecutive // digits starting from the chosen digit int sumDigits = 0 ; // While there are digits to choose while (i < str.length()) { // Update the sum sumDigits += (str.charAt(i) - '0' ); int sumParity = sumDigits % 2 ; // If the parity differs if (digitParity != sumParity) { break ; } i++; } // Return the current sum concatenated with the // Numbiar number for the rest of the string return ( "" + sumDigits + nambiarNumber(str, i + 1 )); } // Driver code public static void main(String[] args) { String str = "9880127431" ; System.out.println(nambiarNumber(str, 0 )); } } |
Python3
# Python3 implementation of the approach # Function to return the Nambiar # number of the given number def nambiarNumber( Str , i): # If there is no digit to choose if (i > = len ( Str )): return "" # Choose the first digit firstDigit = ord ( Str [i]) - ord ( '0' ) # Chosen digit's parity digitParity = firstDigit % 2 # To store the sum of the consecutive # digits starting from the chosen digit sumDigits = 0 # While there are digits to choose while (i < len ( Str )): # Update the sum sumDigits + = ( ord ( Str [i]) - ord ( '0' )) sumParity = sumDigits % 2 # If the parity differs if (digitParity ! = sumParity): break i + = 1 # Return the current sum concatenated with the # Numbiar number for the rest of the String return ("" + str (sumDigits) + nambiarNumber( Str , i + 1 )) # Driver code Str = "9880127431" print (nambiarNumber( Str , 0 )) # This code is contributed by Mohit Kumar |
C#
// C# implementation of the approach. using System; using System.Collections.Generic; class GFG { // Function to return the Nambiar // number of the given number static String nambiarNumber(String str, int i) { // If there is no digit to choose if (i >= str.Length) return "" ; // Choose the first digit int firstDigit = (str[i] - '0' ); // Chosen digit's parity int digitParity = firstDigit % 2; // To store the sum of the consecutive // digits starting from the chosen digit int sumDigits = 0; // While there are digits to choose while (i < str.Length) { // Update the sum sumDigits += (str[i] - '0' ); int sumParity = sumDigits % 2; // If the parity differs if (digitParity != sumParity) { break ; } i++; } // Return the current sum concatenated with the // Numbiar number for the rest of the string return ( "" + sumDigits + nambiarNumber(str, i + 1)); } // Driver code public static void Main(String[] args) { String str = "9880127431" ; Console.WriteLine(nambiarNumber(str, 0)); } } // This code is contributed by Rajput-Ji |
Javascript
<script> // Javascript implementation of the approach // Function to return the Nambiar // number of the given number function nambiarNumber(str,i) { // If there is no digit to choose if (i >= str.length) return "" ; // Choose the first digit let firstDigit = (str[i].charCodeAt(0) - '0' .charCodeAt(0)); // Chosen digit's parity let digitParity = firstDigit % 2; // To store the sum of the consecutive // digits starting from the chosen digit let sumDigits = 0; // While there are digits to choose while (i < str.length) { // Update the sum sumDigits += (str[i].charCodeAt(0) - '0'.charCodeAt(0)); let sumParity = sumDigits % 2; // If the parity differs if (digitParity != sumParity) { break ; } i++; } // Return the current sum concatenated with the // Numbiar number for the rest of the string return ( "" + sumDigits + nambiarNumber(str, i + 1)); } // Driver code let str = "9880127431" ; document.write(nambiarNumber(str, 0)); // This code is contributed by unknown2108 </script> |
26971
Time Complexity: O(n) where n is the length of the string
Auxiliary Space: O(n) where n is the length of the string
Ready to dive in? Explore our Free Demo Content and join our DSA course, trusted by over 100,000 neveropen!